I am working on a model that includes multiple growth curves. I would like to know how the interaction between two of the intercepts and two of the slopes affects two outcomes. I assume I cannot treat the intercepts and slopes as observed as I have it set up now because they are latent, and that my code below is incorrect. I bolded the line that I believe is incorrect. Is the best way forward to treat the indicators of the intercepts and slopes the way I would in a regular latent interaction (double mean-centering or orthogonalizing)? Is this model even something I can run in lavaan?
m1 <- '
# intercepts and slopes
hostInt =~ 1*sibhost3 + 1*sibhost4 + 1*sibhost5 + 1*sibhost6 + 1*sibhost7 + 1*sibhost8 + 1*sibhost9
hostSlop =~ 0*sibhost3 + 1*sibhost4 + 2*sibhost5 + 3*sibhost6 + 4*sibhost7 + 5*sibhost8 + 6*sibhost9
aggInt =~ 1*agg3 + 1*agg4 + 1*agg5 + 1*agg6 + 1*agg7 + 1*agg8 + 1*agg9
aggSlop=~ 0*agg3 + 1*agg4 + 2*agg5 + 3*agg6 + 4*agg7 + 5*agg8 + 6*agg9
affInt=~ 1*sibaffect3 + 1*sibaffect4 + 1*sibaffect5 + 1*sibaffect6 + 1*sibaffect7 + 1*sibaffect8 + 1*sibaffect9
affSlop=~0*sibaffect3 + 1*sibaffect4 + 2*sibaffect5 + 3*sibaffect6 + 4*sibaffect7 + 5*sibaffect8 + 6*sibaffect9
# regressions
hostInt ~ ov3 + rv3 + gender_coded
hostSlop ~ ov3 + rv3 + gender_coded
aggInt ~ ov3 + rv3 + gender_coded
aggSlop ~ ov3 + rv3 + gender_coded
affInt ~ ov3 + rv3 + gender_coded
affSlop ~ ov3 + rv3 + gender_coded
delinq9 ~ hostInt + hostSlop + aggInt + aggSlop + affInt + affSlop
dep9 ~ hostInt + hostSlop + aggInt + aggSlop + affInt + affSlop
delinq9 + dep9 ~ hostInt:aggInt + hostSlop:aggSlop
'
fit1 <- growth(m1, data=data, missing = "FIML", estimator="MLR")
summary(fit1, fit.measures=TRUE)