Modification Indices in CFA

733 views
Skip to first unread message

Emma Mills

unread,
Aug 27, 2016, 8:18:43 AM8/27/16
to lavaan
Hi, 

I would really appreciate some help...

I'm carrying out confirmatory factor analyses using lavaan and when looking at my one factor solution, my value for RMSEA is just slightly higher than I would like. Therefore I want to look at the modification indices to see which item to remove. I have read that I should be looking at the indices that have =~ as opposed to ~~, but I don't have these in my output (see below)

Is this because it is only one factor? How should I modify my model based on the below:


modificationindices(TRCFA2, sort=TRUE)

     lhs op    rhs     mi mi.scaled    epc sepc.lv sepc.all sepc.nox
72 Post17 ~~ Post18 55.024    36.944  0.073   0.073    0.098    0.098
33  Post1 ~~  Post4 51.355    34.481  0.058   0.058    0.101    0.101
57 Post14 ~~ Post15 32.466    21.798  0.041   0.041    0.070    0.070
51 Post13 ~~ Post15 19.752    13.262 -0.035  -0.035   -0.060   -0.060
41  Post1 ~~ Post20 19.506    13.097  0.035   0.035    0.051    0.051
68 Post16 ~~ Post17 19.220    12.905  0.062   0.062    0.076    0.076
50 Post13 ~~ Post14 18.387    12.345  0.034   0.034    0.059    0.059
77 Post19 ~~ Post20 16.935    11.371  0.035   0.035    0.057    0.057
43  Post4 ~~ Post14 16.005    10.746 -0.032  -0.032   -0.056   -0.056
52 Post13 ~~ Post16 15.069    10.118 -0.043  -0.043   -0.065   -0.065
74 Post17 ~~ Post20 14.704     9.873 -0.042  -0.042   -0.050   -0.050
71 Post16 ~~ Post20 13.584     9.121 -0.038  -0.038   -0.051   -0.051
38  Post1 ~~ Post17 13.103     8.798 -0.038  -0.038   -0.051   -0.051
69 Post16 ~~ Post18 12.297     8.256  0.033   0.033    0.049    0.049
46  Post4 ~~ Post17 11.522     7.736 -0.038  -0.038   -0.054   -0.054
35  Post1 ~~ Post14 10.504     7.053 -0.024  -0.024   -0.041   -0.041
36  Post1 ~~ Post15  8.740     5.868 -0.022  -0.022   -0.036   -0.036
58 Post14 ~~ Post16  8.076     5.423 -0.028  -0.028   -0.043   -0.043
48  Post4 ~~ Post19  5.874     3.944 -0.021  -0.021   -0.042   -0.042
42  Post4 ~~ Post13  5.864     3.937  0.021   0.021    0.037    0.037
63 Post15 ~~ Post16  5.705     3.831  0.023   0.023    0.035    0.035
66 Post15 ~~ Post19  5.336     3.583 -0.018  -0.018   -0.034   -0.034
75 Post18 ~~ Post19  4.744     3.185 -0.017  -0.017   -0.031   -0.031
39  Post1 ~~ Post18  4.605     3.092 -0.015  -0.015   -0.025   -0.025
54 Post13 ~~ Post18  4.193     2.815 -0.016  -0.016   -0.026   -0.026
65 Post15 ~~ Post18  3.813     2.560  0.014   0.014    0.023    0.023
60 Post14 ~~ Post18  3.769     2.531 -0.014  -0.014   -0.023   -0.023
45  Post4 ~~ Post16  3.487     2.341  0.020   0.020    0.032    0.032
55 Post13 ~~ Post19  3.155     2.118  0.016   0.016    0.030    0.030
76 Post18 ~~ Post20  2.946     1.978 -0.013  -0.013   -0.019   -0.019
53 Post13 ~~ Post17  2.719     1.825  0.019   0.019    0.026    0.026
62 Post14 ~~ Post20  2.596     1.743  0.012   0.012    0.019    0.019
40  Post1 ~~ Post19  1.809     1.215  0.011   0.011    0.020    0.020
59 Post14 ~~ Post17  1.166     0.783 -0.011  -0.011   -0.015   -0.015
49  Post4 ~~ Post20  1.146     0.770 -0.009  -0.009   -0.014   -0.014
47  Post4 ~~ Post18  1.120     0.752 -0.008  -0.008   -0.014   -0.014
67 Post15 ~~ Post20  0.869     0.584 -0.007  -0.007   -0.011   -0.011
70 Post16 ~~ Post19  0.470     0.316 -0.008  -0.008   -0.013   -0.013
64 Post15 ~~ Post17  0.275     0.184 -0.005  -0.005   -0.007   -0.007
56 Post13 ~~ Post20  0.207     0.139  0.004   0.004    0.006    0.006
37  Post1 ~~ Post16  0.193     0.130 -0.004  -0.004   -0.007   -0.007
73 Post17 ~~ Post19  0.081     0.055 -0.003  -0.003   -0.005   -0.005
34  Post1 ~~ Post13  0.081     0.055  0.002   0.002    0.004    0.004
61 Post14 ~~ Post19  0.047     0.032 -0.002  -0.002   -0.003   -0.003
44  Post4 ~~ Post15  0.046     0.031  0.002   0.002    0.003    0.003


Thanks in advance, 

Emma.

김계수

unread,
Aug 27, 2016, 9:51:54 AM8/27/16
to lavaan
Dear Emma Mills,
You know that formula type ~~ is residual covariance between one variable(latent variable) and other variable(latent variable). If you want to use modification model strategy, please covariate Post17 ~~ Post1. Becasue MI can be decrease much chi-square in this case. But you should confirm your data specification and strong theorethical foundation.
     lhs op    rhs     mi mi.scaled    epc sepc.lv sepc.all sepc.nox
72 Post17 ~~ Post18 55.024    36.944  0.073   0.073    0.098    0.098
Best regard,


2016년 8월 27일 토요일 오후 9시 18분 43초 UTC+9, Emma Mills 님의 말:

Emma Mills

unread,
Aug 27, 2016, 10:05:36 AM8/27/16
to lavaan
Hi, Thanks for your prompt response!

I'm not sure I fully understand though - should I remove Post 17 from my model and re-run to see if this improves the model fit indices (including the chi square value)?  I'm not sure what you mean by '  please covariate Post17 ~~ Post1'

Thanks

Emma.

김계수

unread,
Aug 27, 2016, 10:28:36 AM8/27/16
to lav...@googlegroups.com
 Please add Post17 ~~ Post1 in yourmodel equation. And then re-run. After that you can find your model improvement.
Thanks,

--
You received this message because you are subscribed to a topic in the Google Groups "lavaan" group.
To unsubscribe from this topic, visit https://groups.google.com/d/topic/lavaan/tOa7uh3vSc8/unsubscribe.
To unsubscribe from this group and all its topics, send an email to lavaan+unsubscribe@googlegroups.com.
To post to this group, send email to lav...@googlegroups.com.
Visit this group at https://groups.google.com/group/lavaan.
For more options, visit https://groups.google.com/d/optout.



--
============================================
세명대학교 대외협력처장/국제교육원장/경영학과 교수
Dean for Int'l Affairs of Sermyung Univ/
Department of Business Administration, Semyung University
#65 Semyungro, Jechon Chungbuk 390-711, Korea(ROK)
http://cafe.daum.net/semstatistics
[phone] +82-43-649-1242 (office) or 010-9428-6768 (cell)
[fax] +82-43-649-1242 (office)
[e-mail]
gs...@semyung.ac.kr
           seml...@gmail.com
============================================

Oleksii Shestakovskyi

unread,
Aug 28, 2016, 4:09:13 AM8/28/16
to lavaan
Hi all,

it seems to me, that here you should ad a covariation Post17 ~~ Post18

Emma,
if you want to drop an item instead of  adding error covariance, you can just drop the item with a low (lower than +/-0.4 usually) loading.

But again, as our colleague has written before, you should have theoretical explanations for that.

Second, after dropping an item, your new model won't be comparable with previous one. You cannot directly compare chi-squares and measures of fit.

Best,
Oleksii Shestakovskyi
independent researcher, Ukraine
 
субота, 27 серпня 2016 р. 15:18:43 UTC+3 користувач Emma Mills написав:

kma...@aol.com

unread,
Aug 28, 2016, 10:21:33 AM8/28/16
to lavaan
Emma,
I would like to offer a little different perspective on this.  Modification indices are limited to parameters included in the model specification but fixed (which is different from not even being represented in the model specification).  Looking over your modification indicies, there appear to be groups of 3 or more items that all suggest greater covariation than allowed by your one-factor model.  For example, items 13, 14 and 15 appear to follow this pattern.  So, you should also consider the possibility that you have too few factors and that certain clusters of items should load on separate factors.  The resulting multi-factor model may offer a more useful substantive description of your items than a one-factor model with many free covariances between item uniquenesses.  You should closely examine the residuals to look for patterns in the ill fit to help supplement your use of modification indices.

Keith
------------------------
Keith A. Markus
John Jay College of Criminal Justice, CUNY
http://jjcweb.jjay.cuny.edu/kmarkus
Frontiers of Test Validity Theory: Measurement, Causation and Meaning.
http://www.routledge.com/books/details/9781841692203/
Reply all
Reply to author
Forward
0 new messages