I’m trying to fit several models with an interaction of a latent variable and an observed continuous variable. I followed the approach as described in Schoemann & Jorgensen (2021), although their example has an interaction of two latent variables instead of one latent and one observed as in my case. For each model I tested so far, I get multiple error/warning messages so I believe I’m doing something wrong. I hope any of you could give me some guidance.
The code of one of my models:
dat2 <- indProd(BLS_PT, var1 = c("bls_CST_AFF_MOsum_6", "bls_CST_CAR_MOsum_6",
"bls_CST_COM_MOsum_6", "bls_CST_CUD_MOsum_6", "bls_CST_CON_MOsum_6"), var2 = "cntxt_adv", match = FALSE, doubleMC = TRUE)
m1 <- 'f1 =~ bls_CST_AFF_MOsum_6 + bls_CST_CAR_MOsum_6 + bls_CST_COM_MOsum_6 + bls_CST_CUD_MOsum_6 + bls_CST_CON_MOsum_6
f1_cntxt =~ bls_CST_AFF_MOsum_6.cntxt_adv + bls_CST_CAR_MOsum_6.cntxt_adv +
bls_CST_COM_MOsum_6.cntxt_adv + bls_CST_CUD_MOsum_6.cntxt_adv + bls_CST_CON_MOsum_6.cntxt_adv
resid_CBCL8 ~ f1 + cntxt_adv + f1_cntxt
# residual covariances
bls_CST_AFF_MOsum_6 ~~ t1*bls_CST_CAR_MOsum_6 + t1*bls_CST_COM_MOsum_6 + t1*bls_CST_CUD_MOsum_6 + t1*bls_CST_CON_MOsum_6
bls_CST_CAR_MOsum_6 ~~ t1*bls_CST_COM_MOsum_6 + t1*bls_CST_CUD_MOsum_6 + t1*bls_CST_CON_MOsum_6
bls_CST_COM_MOsum_6 ~~ t1*bls_CST_CUD_MOsum_6 + t1*bls_CST_CON_MOsum_6
bls_CST_CUD_MOsum_6 ~~ t1*bls_CST_CON_MOsum_6'
fact_m1 <- sem(m1, data=dat2,
std.lv=TRUE, ordered=c("bls_CST_AFF_MOsum_6", "bls_CST_CAR_MOsum_6", "bls_CST_COM_MOsum_6", "bls_CST_CUD_MOsum_6",
"bls_CST_CON_MOsum_6"))
summary(fact_m1, fit.measures=TRUE, standardized=TRUE)
parameterEstimates(fact_m1, rsquare=TRUE)
Warning: lavaan WARNING: correlation between variables bls_CST_CON_MOsum_6.cntxt_adv and bls_CST_CON_MOsum_6 is (nearly) 1.0I don’t really understand how this can happen when I use indProd with doubleMC=TRUE.
Warning: lavaan WARNING: covariance matrix of latent variables is not positive definite; use lavInspect(fit, "cov.lv") to investigate.> lavInspect(fact_m1, "
cov.lv")
f1 f1_cnt
f1 1.000
f1_cntxt -24.141 1.000
The model with only resid_CBCL8 ~ f1 shows good fit. My sample size is n=600. Other models with different predictors (f1) but same Y and M result in similar errors/warnings or non-convergence. Any help is greatly appreciated!