Regressions:
Estimate Std.Err z-value P(>|z|)
pt ~
wt (b) 0.041 0.044 0.919 0.358
admq (c) 0.740 0.168 4.393 0.000
wt ~
admq (a) 0.559 0.255 2.189 0.029
Defined Parameters:
Estimate Std.Err z-value P(>|z|)
indirect 0.023 0.026 0.867 0.386 (quanitifies effect of mediation)
total 0.763 0.159 4.803 0.000
I believe there is no mediation effect as the indirect effect is not significant?
And what do we have to report in a mediation results table?
+ Do you first calculate the main effects without the mediation analyses to report? (seems logic)
Model 2 (sorry...)
X= wt
M= PT
Y= BI (behavioral intensions)
mediation.model='
#measurement model
interperq=~IP2+IP3+IP4+IP5+IP6+IP6+IP7+IP8+IP9
techq=~TQ1+TQ2+TQ3+TQ4
environq=~EV5+EV6+EV9+EV11
admq=~AQ6+AQ7+AQ8+AQ9
wt=~WT7r+WT8r
pt=~PT1+PT2+PT3
bi =~BI1+BI2+BI3+BI4
#structural model
bi~b*pt+c*wt
pt~a*wt
indirect:= a*b
total:= c+(a*b)'
fit = sem(mediation.model, data=voor_R, se="bootstrap")
summary(fit)
Regressions:
Estimate Std.Err z-value P(>|z|)
bi ~
pt (b) 0.859 0.087 9.815 0.000
wt (c) 0.018 0.044 0.402 0.688
pt ~
wt (a) 0.141 0.066 2.130 0.033
Defined Parameters:
Estimate Std.Err z-value P(>|z|)
indirect 0.121 0.054 2.237 0.025
total 0.139 0.074 1.882 0.060
there is a mediation effect?
If yes, I believe it is a full mediation because Y on X is non significant