social_id_model = '
level: 1 # Latent variables (=~)
injunctive_norm_general =~ 1 * Q36_1 + 1 * Q37_1 descriptive_norm_general =~ 1 * Q38_1 + 1 * Q39_1 personal_norm_general =~ 1 * Q53_1 + 1 * Q54_1 policy_acceptance =~ 1 * Q64_1 + 1 * Q66_1
# Regressions (~)
policy_acceptance ~ Q63_1 Q63_1 ~ injunctive_norm_general + descriptive_norm_general + personal_norm_general personal_norm_general ~ injunctive_norm_general + descriptive_norm_general injunctive_norm_general ~ Q35_1 descriptive_norm_general ~ Q35_1
level: 2 # Latent variable injunctive_norm_general =~ 1 * Q36_1 + 1 * Q37_1 descriptive_norm_general =~ 1 * Q38_1 + 1 * Q39_1 personal_norm_general =~ 1 * Q53_1 + 1 * Q54_1 policy_acceptance =~ 1 * Q64_1 + 1 * Q66_1 # Regression. Q63_1 ~ injunctive_norm_general # Residual correlations injunctive_norm_general ~~ descriptive_norm_general + personal_norm_general descriptive_norm_general ~~ personal_norm_general
'
social_id_fit = sem(social_id_model, data, cluster = "country_sample", group = "gWP4")
Error in ov.names.l[[g]] : subscript out of bounds
Hello,
Why the 1*item in your mearusment models? Try to run the models without the “1”…
Best.
Jº
--
You received this message because you are subscribed to the Google Groups "lavaan" group.
To unsubscribe from this group and stop receiving emails from it, send an email to lavaan+un...@googlegroups.com.
To post to this group, send email to lav...@googlegroups.com.
Visit this group at https://groups.google.com/group/lavaan.
To view this discussion on the web visit https://groups.google.com/d/msgid/lavaan/55d4a677-b68b-45f0-a784-f67fa64903b7%40googlegroups.com.
For more options, visit https://groups.google.com/d/optout.
Is it possible to do a multi-level and multi-group analysis like this?
model <- '
Group: 1
Level: 1
foo ~ bar
Level: 2
foo ~ bar
Group: 2
Level: 1
foo ~ bar
Level: 2
foo ~ bar
Group: 3
Level: 1
foo ~ bar
Level: 2
foo ~ bar
'
which optimizers and estimators might be suitable for having a multi-group multilevel SEM?
Moreover, are there any other parameters that enhance running such a model?