Hello everyone!
I estimate a model with two latent factors (3 categorical indicators each), a control variable Gender and a manifest dependent variable. Model converge with a good fit (chi-sq p-value = 0.11; CFI 0.99; RMSEA 0.02).
Since my sample is complex (students clustered in colleges), in the next model I introduce correction for clustering (cluster = "ID_college")
Surprisingly, outputs of both models are identical -- except in the second one there is a line " Number of clusters [ID_college] 13"
Why the cluster correction didn't work?
Any help will be very much appreciated
Thank you!
Pasha
First model - without cluster correction
pathmodel1202a <- '#measurement model
Monitoring =~ v22 + v23 + v24
Love =~ v5 + +v8 + v10
#regressions
v71 ~ Monitoring
v71 ~ Gender
Monitoring ~ Love
Monitoring ~ Gender
Love ~ Gender'
fit1202a <- sem(pathmodel1202a, data=datasem, ordered = c("v22", "v23", "v24", "v5", "v8", "v10", "v71"))
summary(fit1202a, fit.measures=T, rsquare = T)
lavaan 0.6-5 ended normally after 25 iterations
Estimator DWLS
Optimization method NLMINB
Number of free parameters 41
Used Total
Number of observations 1452 1715
Model Test User Model:
Standard Robust
Test Statistic 14.936 24.283
Degrees of freedom 17 17
P-value (Chi-square) 0.600 0.112
Scaling correction factor 0.682
Shift parameter 2.373
for the simple second-order correction
Model Test Baseline Model:
Test statistic 6973.091 4885.216
Degrees of freedom 21 21
P-value 0.000 0.000
Scaling correction factor 1.429
User Model versus Baseline Model:
Comparative Fit Index (CFI) 1.000 0.999
Tucker-Lewis Index (TLI) 1.000 0.998
Robust Comparative Fit Index (CFI) NA
Robust Tucker-Lewis Index (TLI) NA
Root Mean Square Error of Approximation:
RMSEA 0.000 0.017
90 Percent confidence interval - lower 0.000 0.000
90 Percent confidence interval - upper 0.021 0.032
P-value RMSEA <= 0.05 1.000 1.000
Robust RMSEA NA
90 Percent confidence interval - lower 0.000
90 Percent confidence interval - upper NA
Standardized Root Mean Square Residual:
SRMR 0.023 0.023
Parameter Estimates:
Information Expected
Information saturated (h1) model Unstructured
Standard errors Robust.sem
Latent Variables:
Estimate Std.Err z-value P(>|z|)
Monitoring =~
v22 1.000
v23 0.955 0.029 32.425 0.000
v24 0.971 0.029 33.631 0.000
Love =~
v5 1.000
v8 0.970 0.035 27.954 0.000
v10 0.861 0.032 26.971 0.000
Regressions:
Estimate Std.Err z-value P(>|z|)
v71 ~
Monitoring -0.364 0.039 -9.365 0.000
Gender -0.321 0.059 -5.450 0.000
Monitoring ~
Love 0.332 0.032 10.535 0.000
Gender -0.171 0.047 -3.608 0.000
Love ~
Gender -0.137 0.061 -2.238 0.025
Second model -- Adding cluster argument:
fit1202a1 <- sem(pathmodel1202a, data=datasem, ordered = c("v22", "v23", "v24", "v5", "v8", "v10", "v71"), cluster = "ID_college")
summary(fit1202a1, fit.measures=T, rsquare = T)
lavaan 0.6-5 ended normally after 25 iterations
Estimator DWLS
Optimization method NLMINB
Number of free parameters 41
Used Total
Number of observations 1452 1715
Number of clusters [ID_college] 13
Model Test User Model:
Standard Robust
Test Statistic 14.936 24.283
Degrees of freedom 17 17
P-value (Chi-square) 0.600 0.112
Scaling correction factor 0.682
Shift parameter 2.373
for the simple second-order correction
Model Test Baseline Model:
Test statistic 6973.091 4885.216
Degrees of freedom 21 21
P-value 0.000 0.000
Scaling correction factor 1.429
User Model versus Baseline Model:
Comparative Fit Index (CFI) 1.000 0.999
Tucker-Lewis Index (TLI) 1.000 0.998
Robust Comparative Fit Index (CFI) NA
Robust Tucker-Lewis Index (TLI) NA
Root Mean Square Error of Approximation:
RMSEA 0.000 0.017
90 Percent confidence interval - lower 0.000 0.000
90 Percent confidence interval - upper 0.021 0.032
P-value RMSEA <= 0.05 1.000 1.000
Robust RMSEA NA
90 Percent confidence interval - lower 0.000
90 Percent confidence interval - upper NA
Standardized Root Mean Square Residual:
SRMR 0.023 0.023
Parameter Estimates:
Information Expected
Information saturated (h1) model Unstructured
Standard errors Robust.sem
Latent Variables:
Estimate Std.Err z-value P(>|z|)
Monitoring =~
v22 1.000
v23 0.955 0.029 32.425 0.000
v24 0.971 0.029 33.631 0.000
Love =~
v5 1.000
v8 0.970 0.035 27.954 0.000
v10 0.861 0.032 26.971 0.000
Regressions:
Estimate Std.Err z-value P(>|z|)
v71 ~
Monitoring -0.364 0.039 -9.365 0.000
Gender -0.321 0.059 -5.450 0.000
Monitoring ~
Love 0.332 0.032 10.535 0.000
Gender -0.171 0.047 -3.608 0.000
Love ~
Gender -0.137 0.061 -2.238 0.025
P.S. Also, I am not sure that my initial model syntax is correct, so I add the picture of
theoretical model I tried to specify here.
