Hi all,
The configural invariance model has 0 degrees of freedom. Can I still proceed by fitting metric/scalar models and by using the delta-fit indices to judge invariance?
See below:
measurement <- '
F1 =~ X1 + X2 + X3
'
con_cfa <- cfa(measurement, data = df,
group = "group")
weak_cfa <- cfa(measurement, data = df,
group = "group",
group.equal = c("loadings"))
strong_cfa <- cfa(measurement, data = df,
group = "group"
group.equal = c("loadings", "intercepts"))
lavTestLRT(con_cfa, weak_cfa, strong_cfa)
Chi-Squared Difference Test
Df AIC BIC Chisq Chisq diff RMSEA Df diff Pr(>Chisq)
con_cfa 0 369790 369941 0.000
weak_cfa 2 369796 369930 10.085 10.085 0.015843 2 0.006459 **
strong_cfa 4 369858 369976 76.078 65.993 0.044574 2 4.674e-15 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
fitMeasures(con_cfa, c("cfi","tli","rmsea","srmr"))
cfi tli rmsea srmr
1 1 0 0
fitMeasures(weak_cfa, c("cfi","tli","rmsea","srmr"))
cfi tli rmsea srmr
0.998 0.995 0.016 0.003
fitMeasures(strong_cfa, c("cfi","tli","rmsea","srmr"))
cfi tli rmsea srmr
0.984 0.977 0.033 0.011