> dis1 <- '
+ SACQ1 =~ Q18_2 + Q18_3 + Q18_13 + Q18_19 + Q18_7 + Q18_1 + Q18_18 + Q18_4 + Q18_9 + Q18_11
+ SACQ4 =~ Q17_23 + Q17_21 + Q17_19 + Q17_17 + Q17_24 + Q17_18 + Q17_14 + Q18_6 + Q17_11
+ SACQ2 =~ Q17_10neg + Q17_12neg + Q17_6neg + Q17_15neg + Q17_20neg + Q17_1
+ SACQ3 =~ Q18_15neg + Q18_16neg + Q18_8neg + Q18_12neg + Q18_17neg + Q18_14neg + Q17_22neg + Q18_10
+ SACQ6 =~ Q17_3neg + Q17_16neg + Q17_4neg + Q17_8neg + Q17_5
+ SACQ5 =~ Q17_2 + Q17_7 + Q17_9 + Q17_13neg
+
+ # Regressions
+ SACQ4 ~ explor+commit+geninstr+coethinstr+eicoethinstr #acadsatisfaction
+ SACQ2 ~ explor+commit+geninstr+coethinstr+eicoethinstr #acadfocus
+ SACQ6 ~ explor+commit+geninstr+coethinstr+eicoethinstr #acadperf
+ SACQ5 ~ explor+commit+geninstr+coethinstr+eicoethinstr #genpurpose
+ SACQ1 ~ explor+commit+genfriend+coethfriend+eicoethpeer #social-general fit
+ SACQ3 ~ explor+commit+genfriend+coethfriend+eicoethpeer #loneliness/socializing
+
+ '
> dis1 <- runMI (dis1, data=datapmm1, estimator="MLR", fun="sem")
> summary(dis1, standardized=TRUE, fit.measures=TRUE)
lavaan.mi object based on 10 imputed data sets.
Convergence information:
The model converged on 10 imputed data sets
Rubin's (1987) rules were used to pool point and SE estimates across 10 imputed data sets, and to calculate degrees of freedom for each parameter's t test and CI.
Robust corrections are made by pooling the naive chi-squared statistic across 10 imputations for which the model converged, then applying the average (across imputations) scaling factor to that pooled value.
To instead pool the robust test statistics, set test = "D2" and pool.robust = TRUE.
Model Test User Model:
Test statistic 1010.187 853.214
Degrees of freedom 1110 1110
P-value 0.985 1.000
Scaling correction factor 1.184
Model Test Baseline Model:
Test statistic 2915.474 2414.672
Degrees of freedom 1197 1197
P-value 0.000 0.000
Scaling correction factor 1.207
User Model versus Baseline Model:
Comparative Fit Index (CFI) 1.000 1.000
Tucker-Lewis Index (TLI) 1.063 1.227
Robust Comparative Fit Index (CFI) 1.000
Robust Tucker-Lewis Index (TLI) 1.000
Root Mean Square Error of Approximation:
RMSEA 0.000 0.000
90 Percent confidence interval - lower 0.000 0.000
90 Percent confidence interval - upper 0.000 NA
P-value RMSEA <= 0.05 1.000 1.000
Robust RMSEA 0.000
90 Percent confidence interval - lower 0.000
90 Percent confidence interval - upper NA
Standardized Root Mean Square Residual:
SRMR 0.074 0.074
Negative pooled test statistic was set to zero, so fit will appear to be arbitrarily perfect. Robust corrections uninformative, not returned.
Here is the output I get when I run the model on the basis of just one imputed dataset:
> dis11 <- sem (dis1, data=datapmm2, estimator="MLR")
> summary(dis11, standardized=TRUE, fit.measures=TRUE)
lavaan 0.6-5 ended normally after 141 iterations
Estimator ML
Optimization method NLMINB
Number of free parameters 129
Number of observations 779
Model Test User Model:
Standard Robust
Test Statistic 6508.117 5406.498
Degrees of freedom 1110 1110
P-value (Chi-square) 0.000 0.000
Scaling correction factor 1.204
for the Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
Test statistic 15367.955 12604.650
Degrees of freedom 1197 1197
P-value 0.000 0.000
Scaling correction factor 1.219
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.619 0.623
Tucker-Lewis Index (TLI) 0.589 0.594
Robust Comparative Fit Index (CFI) 0.628
Robust Tucker-Lewis Index (TLI) 0.599
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -59850.751 -59850.751
Scaling correction factor 1.182
for the MLR correction
Loglikelihood unrestricted model (H1) -56596.693 -56596.693
Scaling correction factor 1.201
for the MLR correction
Akaike (AIC) 119959.503 119959.503
Bayesian (BIC) 120560.386 120560.386
Sample-size adjusted Bayesian (BIC) 120150.748 120150.748
Root Mean Square Error of Approximation:
RMSEA 0.079 0.070
90 Percent confidence interval - lower 0.077 0.069
90 Percent confidence interval - upper 0.081 0.072
P-value RMSEA <= 0.05 0.000 0.000
Robust RMSEA 0.077
90 Percent confidence interval - lower 0.075
90 Percent confidence interval - upper 0.079
Standardized Root Mean Square Residual:
SRMR 0.094 0.094
I get the error message:Negative pooled test statistic was set to zero, so fit will appear to be arbitrarily perfect. Robust corrections uninformative, not returned.
Why is the pooled test statistic much smaller than the test statistic for individual dataset, and why does it turn negative when I try to get the robust test statistic?
devtools::install_github("simsem/semTools/semTools")