Hi,
I want to calculate effect sizes of latent mean differences. Factor variances have been shown to be equal in both groups. For my measurement invariance analysis I used fixed variances for model identification (instead of fixing factor loadings).
But for effect size I need the factor variances, therefore I computed the same model but with fixed factor loadings instead of fixed factor variances. This resulted in exactly the same fit indizes and so on, but I received different latent means.
1) Is that normal and why is that? Or did I make a mistake?
2) Can I use this latent mean differences and the (to eqaulity restrcited) variance to calculate effect size?
######### fixed factor variances
model.variance <- '
# Factor loadings
negm =~ load1*m1+ load3*m3+ load4*m4+ load6*m6+ load7*m7+ load8*m8
negw =~ load1*w1+ load3*w3+ load4*w4+ load6*w6+ load7*w7+ load8*w8
posm =~ load2*m2+ load5*m5+ load9*m9+ load10*m10
posw =~ load2*w2+ load5*w5+ load9*w9+ load10*w10
#intercepts
m1 ~ int11*1
m2 ~ int2*1
m3 ~ int3*1
m4 ~ int4*1
m5 ~ int5*1
m6 ~ int61*1
m7 ~ int7*1
m8 ~ int8*1
m9 ~ int9*1
m10 ~ int10*1
w1 ~ int12*1
w2 ~ int2*1
w3 ~ int3*1
w4 ~ int4*1
w5 ~ int5*1
w6 ~ int62*1
w7 ~ int7*1
w8 ~ int8*1
w9 ~ int9*1
w10 ~ int10*1
# Factor variances
negm ~~ 1*negm
posm ~~ 1*posm
negw ~~ 1*negw
posw ~~ 1*posw
# Factor means
negm ~ NA*1
posm ~ NA*1
#correlated error terms
m1 ~~ w1
m2 ~~ w2
m3 ~~ w3
m4 ~~ w4
m5 ~~ w5
m6 ~~ w6
m7 ~~ w7
m8 ~~ w8
m9 ~~ w9
m10 ~~ w10
'
variance <- cfa(model.variance, data=datw, estimator="MLM",
std.lv=TRUE)
summary(variance, fit.measures=TRUE)
######### fixed factor loadings, egaul variances in both groups
model.variance <- '
# Factor loadings
negm =~ load1*m1+ load3*m3+ load4*m4+ load6*m6+ load7*m7+ load8*m8
negw =~ load1*w1+ load3*w3+ load4*w4+ load6*w6+ load7*w7+ load8*w8
posm =~ load2*m2+ load5*m5+ load9*m9+ load10*m10
posw =~ load2*w2+ load5*w5+ load9*w9+ load10*w10
#intercepts
m1 ~ int11*1
m2 ~ int2*1
m3 ~ int3*1
m4 ~ int4*1
m5 ~ int5*1
m6 ~ int61*1
m7 ~ int7*1
m8 ~ int8*1
m9 ~ int9*1
m10 ~ int10*1
w1 ~ int12*1
w2 ~ int2*1
w3 ~ int3*1
w4 ~ int4*1
w5 ~ int5*1
w6 ~ int62*1
w7 ~ int7*1
w8 ~ int8*1
w9 ~ int9*1
w10 ~ int10*1
# Factor variances
negm ~~ a*negm
posm ~~ b*posm
negw ~~ a*negw
posw ~~ b*posw
# Factor means
negm ~ NA*1
posm ~ NA*1
#correlated error terms
m1 ~~ w1
m2 ~~ w2
m3 ~~ w3
m4 ~~ w4
m5 ~~ w5
m6 ~~ w6
m7 ~~ w7
m8 ~~ w8
m9 ~~ w9
m10 ~~ w10
'
variance <- cfa(model.variance, data=datw, estimator="MLM")
summary(variance, fit.measures=TRUE)