48 views

Skip to first unread message

Feb 7, 2019, 7:51:07 AM2/7/19

to lavaan

Hello,

**###########################################################################################################################################****sampleSize <- 1000 #subjects per group****Groups <- 2**

**#setting aribtrary thresholds****thresh1 <- c(-2,0,2)****thresh2 <- c(-1,0.5,1.6)****thresh3 <- c(-1.5,0.9,1.8)****thresh4 <- c(-1.7,0.3,1.4)****thresh5 <- c(-2.1,0.8,1.7)****thresh6 <- c(-1.2,0.4,1.2)**

**#use a factor structure as data generating mechanism****F <- matrix(c(.9,.8, .7 , .6, .5, .8), ncol = 1) #the model ****rownames(F) <- paste('V', seq(1:6), sep = '')#add labels****colnames(F) <- c('F1')**

**R <- F%*%t(F) # create the correlation matrix****diag(R) <- 1 # adjust the diagonal to the matrix****R**

**#Create two groups using the same starting values and add a grouping variable**

**Data <- data.frame(NA)****Data2facTot <- list(NA)****DataOrdered2fac <- list()**

**for (i in 1:Groups){ **** ****Data2facTot[[i]]<- as.data.frame(rmvnorm(sampleSize, sigma = R))**

**# Make categorical:****Data2facTot[[i]][,1] <- as.numeric(cut(Data2facTot[[i]][,1],breaks = c(-Inf,thresh1,Inf)))****Data2facTot[[i]][,2] <- as.numeric(cut(Data2facTot[[i]][,2],breaks = c(-Inf,thresh2,Inf)))****Data2facTot[[i]][,3] <- as.numeric(cut(Data2facTot[[i]][,3],breaks = c(-Inf,thresh3,Inf)))****Data2facTot[[i]][,4] <- as.numeric(cut(Data2facTot[[i]][,4],breaks = c(-Inf,thresh4,Inf)))****Data2facTot[[i]][,5] <- as.numeric(cut(Data2facTot[[i]][,5],breaks = c(-Inf,thresh5,Inf)))****Data2facTot[[i]][,6] <- as.numeric(cut(Data2facTot[[i]][,6],breaks = c(-Inf,thresh6,Inf)))**

**#Now calculate polychoric correlation****DataOrdered2fac[[i]] <- Data2facTot[[i]]****DataOrdered2fac[[i]][,1] <- ordered(Data2facTot[[i]][,1])****DataOrdered2fac[[i]][,2] <- ordered(Data2facTot[[i]][,2])****DataOrdered2fac[[i]][,3] <- ordered(Data2facTot[[i]][,3])****DataOrdered2fac[[i]][,4] <- ordered(Data2facTot[[i]][,4])****DataOrdered2fac[[i]][,5] <- ordered(Data2facTot[[i]][,5])****DataOrdered2fac[[i]][,6] <- ordered(Data2facTot[[i]][,6])**

**names(DataOrdered2fac[[i]]) <- c("a","b",'c','d','e','f')****}**

**Groupingvar <- c(rep('Tomatoes',sampleSize), rep('Potatoes', sampleSize))****AggregatedData <- Reduce(rbind, DataOrdered2fac)****AggregatedData$Groupingvar <- Groupingvar**

**AggregatedDataNum <- Reduce(rbind, Data2facTot)****AggregatedDataNum$Groupingvar <- Groupingvar**

**lavCor(DataOrdered2fac)**

**#compare lavcor with original cor mat generated from 2 factor model****lavCor(DataOrdered2fac)****R**

**#################################################################################################****#FIT THE MODEL CAN BE DONE USING DIFFERENT SETS OF CONSTRAINTS, THIS IS LAVAAN DEFAULT**

**#MODEL****Model2fac <- '****#Latent variable definition****F1 =~ a + b + c + d + e + f**

**#thresholds****a | t1 + t2 + t3****b | t1 + t2 + t3****c | t1 + t2 + t3****d | t1 + t2 + t3****e | t1 + t2 + t3****f | t1 + t2 + t3**

**'**

**#FIT DEFAULT LAVAAN MODEL****fit <- cfa(Model2fac, **** AggregatedData, **** group = 'Groupingvar', **** #group.equal = 'thresholds',**** estimator = 'MML')**

I am currently try to use the marginal maximum likelihood estimation techniques to fit a categorical factor analysis model but I constantly run into this error:

Error in GLIST[[mm]] : subscript out of bounds

In addition: Warning messages:

1: In if (n < 1L) return(integer(0L)) :

the condition has length > 1 and only the first element will be used

2: In if (n == 1L) return(1L) :

the condition has length > 1 and only the first element will be used

3: In n:2L : numerical expression has 2 elements: only the first used

4: In 1:nvar : numerical expression has 2 elements: only the first used

Here you can find an example of the code I am using both to generate the data and estimate the model:

And then I get the error!

Is there any problem in this version or am I doing something wrong ?

Is there any problem in this version or am I doing something wrong ?

Thanks for any help you can provide me

Feb 8, 2019, 6:32:18 AM2/8/19

to lavaan

I am currently try to use the marginal maximum likelihood estimation techniques to fit a categorical factor analysis model but I constantly run into this error:

Your example doesn't work because AggregatedData is a list containing only the vector Groupingvar.

Is there any problem in this version or am I doing something wrong ?

Do you have the latest development version installed?

Does this example work for you?

`myData <- read.table("http://www.statmodel.com/usersguide/chap5/ex5.16.dat")`

names(myData) <- c("u1","u2","u3","u4","u5","u6","x1","x2","x3","g")

myData$u1 <- ordered(myData$u1)

myData$u2 <- ordered(myData$u2)

myData$u3 <- ordered(myData$u3)

myData$u4 <- ordered(myData$u4)

myData$u5 <- ordered(myData$u5)

myData$u6 <- ordered(myData$u6)

model <- '

f1 =~ u1 + u2 + u3

f2 =~ u4 + u5 + u6

'

fit <- cfa(model, data = myData, estimator = 'MML')

Terrence D. Jorgensen

Assistant Professor, Methods and Statistics

Research Institute for Child Development and Education, the University of Amsterdam

Feb 11, 2019, 5:30:30 AM2/11/19

to lavaan

Dear Dr. Jorgensen,

Thank you for your answer!

In the original message I forgot to specify that my goal was to use MML estimation to test for measurement invariance.

The code you sent works in the case of one group but once I try to estimate the model specifying that I have multiple groups the function breaks again and I run into the same error.

Here's how I did it using your example:

`library(lavaan)`

myData <- read.table("http://www.statmodel.com/usersguide/chap5/ex5.16.dat")

names(myData) <- c("u1","u2","u3","u4","u5","u6","x1","x2","x3","g")

myData$u1 <- ordered(myData$u1)

myData$u2 <- ordered(myData$u2)

myData$u3 <- ordered(myData$u3)

myData$u4 <- ordered(myData$u4)

myData$u5 <- ordered(myData$u5)

myData$u6 <- ordered(myData$u6)

myData$g[1050:2200] = 2

model <- '

f1 =~ u1 + u2 + u3

f2 =~ u4 + u5 + u6

'

fit <- cfa(model, data = myData, group = 'g',estimator = 'MML')

summary(fit)

Is it a bug or for multiple groups the MML estimation has not been implemented yet?

Thanks again for your help.

p.s. I might have sent this privately but I couldn't find the private message and that's why I am writing it again to make it public.

Feb 19, 2019, 2:51:48 PM2/19/19

to lavaan

The code you sent works in the case of one group but once I try to estimate the model specifying that I have multiple groups the function breaks again and I run into the same error.

For me too. Yves might not have implemented this for multiple groups yet. You could try it with a simpler multigroup model first to see if the error still occurs (e.g., 'u1 ~ u2')

Reply all

Reply to author

Forward

0 new messages

Search

Clear search

Close search

Google apps

Main menu