Dear Lavaan users,
I`m trying to set up a multivariate latent growth curve model consisting out of three latent growth curve models. In particular I`m interested whether and how outcome (io = intercept of outcome orientation, so = slope of outcome orientation) and process orientation (ip = intercept of outcome orientation, sp = slope of process orientation) relate to boredom (i = intercept of boredom, s = slope of boredom) over the course of ca. 30 minutes (4 measurements). First I tried a multivariate growth curve model with boredom and process orientation. That worked and I could see how the intercepts and slopes of these two models are related to each other. Then I looked at boredom and outcome orientation. This also worked. However, when I include all three growth curve models I get the following warning messages:
Warning messages:
1: In lavaan::lavaan(model = growth1, data = Recoded, estimator = "mlr", :
lavaan WARNING: some estimated variances are negative
2: In lavaan::lavaan(model = growth1, data = Recoded, estimator = "mlr", :
lavaan WARNING: covariance matrix of latent variables is not positive definite; use inspect(fit,"
cov.lv") to investigate.
I`m not really familiar with the math behind this. So I`m wondering whether there is a way to fix these problems or is the model just too complex?
I`m looking forward to your responses and comments.
Thanks in advance,
René
> growth1 <- 'i =~ 1*B_2nd_r + 1*B_3rd_r + 1*B_4th_r + 1*B_5th_r
+ s =~ 0*B_2nd_r + 1*B_3rd_r + 2*B_4th_r + 3*B_5th_r
+
+ ip =~ 1*GF01_06 + 1*GF02_06 + 1*GF03_06 + 1*GF04_06
+ sp =~ 0*GF01_06 + 1*GF02_06 + 2*GF03_06 + 3*GF04_06
+
+ io =~ 1*O1_r + 1*O2_r + 1*O3_r + 1*O4_r
+ so =~ 0*O1_r + 1*O2_r + 2*O3_r + 3*O4_r
+
+ i ~ ip + sp + io + so
+ s ~ ip + sp + io + so
+
+
+ '
>
>
> fit <- growth (model = growth1, estimator="mlr", data=Recoded)
Warning messages:
1: In lavaan::lavaan(model = growth1, data = Recoded, estimator = "mlr", :
lavaan WARNING: some estimated variances are negative
2: In lavaan::lavaan(model = growth1, data = Recoded, estimator = "mlr", :
lavaan WARNING: covariance matrix of latent variables is not positive definite; use inspect(fit,"
cov.lv") to investigate.
> summary(fit, fit.measures = TRUE)
lavaan (0.5-16) converged normally after 8687 iterations
Number of observations 131
Estimator ML Robust
Minimum Function Test Statistic 84.770 77.002
Degrees of freedom 51 51
P-value (Chi-square) 0.002 0.011
Scaling correction factor 1.101
for the Yuan-Bentler correction
Model test baseline model:
Minimum Function Test Statistic 1471.567 1066.447
Degrees of freedom 66 66
P-value 0.000 0.000
User model versus baseline model:
Comparative Fit Index (CFI) 0.976 0.974
Tucker-Lewis Index (TLI) 0.969 0.966
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -7156.235 -7156.235
Scaling correction factor 1.312
for the MLR correction
Loglikelihood unrestricted model (H1) -7113.850 -7113.850
Scaling correction factor 1.192
for the MLR correction
Number of free parameters 39 39
Akaike (AIC) 14390.470 14390.470
Bayesian (BIC) 14502.603 14502.603
Sample-size adjusted Bayesian (BIC) 14379.250 14379.250
Root Mean Square Error of Approximation:
RMSEA 0.071 0.062
90 Percent Confidence Interval 0.043 0.097 0.032 0.088
P-value RMSEA <= 0.05 0.100 0.218
Standardized Root Mean Square Residual:
SRMR 0.048 0.048
Parameter estimates:
Information Observed
Standard Errors Robust.huber.white
Estimate Std.err Z-value P(>|z|)
Latent variables:
i =~
B_2nd_r 1.000
B_3rd_r 1.000
B_4th_r 1.000
B_5th_r 1.000
s =~
B_2nd_r 0.000
B_3rd_r 1.000
B_4th_r 2.000
B_5th_r 3.000
ip =~
GF01_06 1.000
GF02_06 1.000
GF03_06 1.000
GF04_06 1.000
sp =~
GF01_06 0.000
GF02_06 1.000
GF03_06 2.000
GF04_06 3.000
io =~
O1_r 1.000
O2_r 1.000
O3_r 1.000
O4_r 1.000
so =~
O1_r 0.000
O2_r 1.000
O3_r 2.000
O4_r 3.000
Regressions:
i ~
ip -3.759 1.724 -2.181 0.029
sp 34.158 11.077 3.084 0.002
io -0.502 1.198 -0.419 0.675
so -19.495 10.358 -1.882 0.060
s ~
ip 1.283 0.945 1.358 0.174
sp -13.057 8.497 -1.537 0.124
io 0.174 0.503 0.345 0.730
so 6.702 4.692 1.428 0.153
Covariances:
ip ~~
sp 61.629 24.247 2.542 0.011
io 257.678 91.725 2.809 0.005
so -0.485 26.362 -0.018 0.985
sp ~~
io 14.547 32.645 0.446 0.656
so 36.870 10.586 3.483 0.000
io ~~
so -49.448 44.064 -1.122 0.262
i ~~
s 618.880 335.534 1.844 0.065
Intercepts:
B_2nd_r 0.000
B_3rd_r 0.000
B_4th_r 0.000
B_5th_r 0.000
GF01_06 0.000
GF02_06 0.000
GF03_06 0.000
GF04_06 0.000
O1_r 0.000
O2_r 0.000
O3_r 0.000
O4_r 0.000
i 434.183 162.034 2.680 0.007
s -134.360 109.335 -1.229 0.219
ip 67.110 2.620 25.613 0.000
sp -4.226 0.940 -4.498 0.000
io 55.128 3.193 17.264 0.000
so -1.434 0.916 -1.565 0.118
Variances:
B_2nd_r 261.902 97.496
B_3rd_r 250.842 55.155
B_4th_r 224.109 49.851
B_5th_r 189.998 75.283
GF01_06 452.438 98.061
GF02_06 154.638 45.688
GF03_06 237.029 66.348
GF04_06 321.221 75.863
O1_r 459.608 110.295
O2_r 212.102 67.912
O3_r 89.950 29.050
O4_r 86.396 54.248
i -1070.086 1029.194
s -203.109 216.301
ip 633.878 102.862
sp 27.450 11.025
io 1110.082 119.542
so 69.215 22.549