I have a question. My model shows negative covariances for the observed variables but I do not understand why
WSPISNPBCATTINTHAG <- '
# Latent variables
Intention =~ 1*I2 + A8 + A14
Hagerbaum =~ 1*H1 + H2 + H3 + H4 + H5 + H6
Attitude =~ 1*A1 + A5 + A6
PerceivedBehavioralControl =~ 1*A3 + A10
# Regression
Hagerbaum ~ Intention + PerceivedBehavioralControl
Intention ~ Attitude + PerceivedBehavioralControl + A9 + SS + JD + WJI + WTC
'
# Run Lavaan
MODELWSPISNPBCATTINTHAG <- sem(model = WSPISNPBCATTINTHAG, data=mydata, orthogonal=FALSE,
std.lv=TRUE)
summary(MODELWSPISNPBCATTINTHAG, fit.measures=TRUE, standardized=TRUE)
#covariantiematrix
lavInspect(MODELWSPISNPBCATTINTHAG, "h1")
inspect(MODELWSPISNPBCATTINTHAG,"cor.all",)
inspect(MODELWSPISNPBCATTINTHAG, "rsquare")
lavaan (0.6-1) converged normally after 36 iterations
Number of observations 219
Estimator ML
Model Fit Test Statistic 260.131
Degrees of freedom 141
P-value (Chi-square) 0.000
Model test baseline model:
Minimum Function Test Statistic 1607.013
Degrees of freedom 161
P-value 0.000
User model versus baseline model:
Comparative Fit Index (CFI) 0.918
Tucker-Lewis Index (TLI) 0.906
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -5092.353
Loglikelihood unrestricted model (H1) -4962.288
Number of free parameters 34
Akaike (AIC) 10252.706
Bayesian (BIC) 10367.935
Sample-size adjusted Bayesian (BIC) 10260.190
Root Mean Square Error of Approximation:
RMSEA 0.062
90 Percent Confidence Interval 0.050 0.074
P-value RMSEA <= 0.05 0.048
Standardized Root Mean Square Residual:
SRMR 0.085
Parameter Estimates:
Information Expected
Information saturated (h1) model Structured
Standard Errors Standard
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
Intention =~
I2 1.000 1.895 0.697
A8 0.782 0.064 12.245 0.000 1.482 0.866
A14 0.666 0.063 10.518 0.000 1.262 0.723
Hagerbaum =~
H1 1.000 1.176 0.882
H2 0.486 0.053 9.210 0.000 0.572 0.559
H3 0.912 0.056 16.385 0.000 1.073 0.804
H4 1.082 0.050 21.679 0.000 1.273 0.909
H5 0.766 0.070 10.913 0.000 0.901 0.632
H6 1.027 0.054 19.084 0.000 1.207 0.862
Attitude =~
A1 1.000 1.000 0.534
A5 1.339 0.143 9.389 0.000 1.339 0.651
A6 1.011 0.109 9.281 0.000 1.011 0.644
PerceivedBehavioralControl =~
A3 1.000 1.000 0.509
A10 1.688 0.149 11.364 0.000 1.688 0.914
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
Hagerbaum ~
Intention 0.397 0.070 5.662 0.000 0.640 0.640
PrcvdBhvrlCntr -0.234 0.128 -1.833 0.067 -0.199 -0.199
Intention ~
Attitude 1.094 0.229 4.768 0.000 0.577 0.577
PrcvdBhvrlCntr 0.564 0.204 2.762 0.006 0.298 0.298
A9 0.120 0.048 2.477 0.013 0.063 0.139
SS -0.039 0.021 -1.851 0.064 -0.021 -0.106
JD 0.017 0.041 0.417 0.676 0.009 0.026
WJI 0.014 0.055 0.250 0.803 0.007 0.014
WTC -0.083 0.045 -1.859 0.063 -0.044 -0.119
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
Attitude ~~
PrcvdBhvrlCntr 0.660 0.073 8.994 0.000 0.660 0.660
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.I2 3.803 0.420 9.055 0.000 3.803 0.514
.A8 0.732 0.127 5.755 0.000 0.732 0.250
.A14 1.452 0.166 8.727 0.000 1.452 0.477
.H1 0.394 0.050 7.852 0.000 0.394 0.222
.H2 0.720 0.071 10.132 0.000 0.720 0.688
.H3 0.631 0.069 9.107 0.000 0.631 0.354
.H4 0.340 0.050 6.860 0.000 0.340 0.174
.H5 1.222 0.122 9.978 0.000 1.222 0.601
.H6 0.503 0.061 8.273 0.000 0.503 0.256
.A1 2.500 0.266 9.414 0.000 2.500 0.714
.A5 2.438 0.307 7.942 0.000 2.438 0.576
.A6 1.442 0.179 8.035 0.000 1.442 0.585
.A3 2.859 0.299 9.569 0.000 2.859 0.741
.A10 0.560 0.368 1.520 0.129 0.560 0.164
.Intention 1.000 0.278 0.278
.Hagerbaum 1.000 0.723 0.723
Attitude 1.000 1.000 1.000
PrcvdBhvrlCntr 1.000 1.000 1.000