Hi ,
I am not so sure if someone can help to figure out solutions for my latent growth modeling.
I have 3 time points (CCCE_w1 to CCCE_w3) and conduct latent growth modeling.
##master is the dataset name
# mean latent intercept and constrained residual variances
# intercept
CCCEfriendsi =~ 1*CCCE_friends_w1 + 1*CCCE_friends_w2 + 1*CCCE_friends_w3
# slope
CCCEfriendss =~ 0*CCCE_friends_w1 + 1*CCCE_friends_w2 + 2*CCCE_friends_w3
# residual variances
CCCE_friends_w1~~r*CCCE_friends_w1
CCCE_friends_w2~~r*CCCE_friends_w2
CCCE_friends_w3~~r*CCCE_friends_w3
'
master.fit3 = growth(master.model3,
data=Region2)
summary(master.fit3)
parameterestimates(master.fit3, standardized=TRUE) ##CIs for parameters
fitmeasures(master.fit3) ##fit indices
########################################
However, R gives me output
Warning message:
In lav_object_post_check(object) :
lavaan WARNING: some estimated lv variances are negative
and the result shows this:
> summary(master.fit3)
lavaan 0.6-3 ended normally after 27 iterations
Optimization method NLMINB
Number of free parameters 8
Number of equality constraints 2
Used Total
Number of observations 190 451
Estimator ML
Model Fit Test Statistic 3.567
Degrees of freedom 3
P-value (Chi-square) 0.312
Parameter Estimates:
Information Expected
Information saturated (h1) model Structured
Standard Errors Standard
Latent Variables:
Estimate Std.Err z-value P(>|z|)
CCCEfriendsi =~
CCCE_frinds_w1 1.000
CCCE_frinds_w2 1.000
CCCE_frinds_w3 1.000
CCCEfriendss =~
CCCE_frinds_w1 0.000
CCCE_frinds_w2 1.000
CCCE_frinds_w3 2.000
Covariances:
Estimate Std.Err z-value P(>|z|)
CCCEfriendsi ~~
CCCEfriendss 0.007 0.039 0.184 0.854
Intercepts:
Estimate Std.Err z-value P(>|z|)
.CCCE_frinds_w1 0.000
.CCCE_frinds_w2 0.000
.CCCE_frinds_w3 0.000
CCCEfriendsi 3.446 0.058 58.927 0.000
CCCEfriendss -0.153 0.033 -4.593 0.000
Variances:
Estimate Std.Err z-value P(>|z|)
.CCCE_frn_1 (r) 0.448 0.046 9.747 0.000
.CCCE_frn_2 (r) 0.448 0.046 9.747 0.000
.CCCE_frn_3 (r) 0.448 0.046 9.747 0.000
CCCEfrinds 0.277 0.077 3.599 0.000
CCCEfrndss -0.013 0.032 -0.427 0.669
>
How can I handle the problem? Can I change the estimator ?
Thanks again!
Yuen Wan