I am trying to figure out if I can add quadratic and/or polynomial terms within a path model in lavaan. Below is my model code for my path model. Please let me know if and how I can add a quadratic term between bird_N and, say, t.mean (or any other variable serving as a predictor of bird_N). I wish to add this quadratic term in order to take into account a unimodal response (lack of linearity) between bird_N and associated predictor/mediating variables related to bird_N.
SEM.1<-
'
###
#direct effect of mean temp
bird_N ~ m*t.mean
#direct effect of count of 5th quantile of t
bird_N ~ n*t.count.05
#direct effect of count of 95th quantile of t
bird_N ~ o*t.count.95
#direct effect of t. range
bird_N ~ p*t.range
#direct effect of precip
bird_N ~ q*precip
###
#indirect effect of mean temp, via pc1.both
pc1.both ~ a*t.mean
bird_N ~ k*pc1.both
#indirect effect of count of 5th quantile of t, via pc1.both
pc1.both ~ b*t.count.05
#indirect effect of count of 95th quantile of t, via pc1.both
pc1.both ~ c*t.count.95
#indirect effect of t. range, via pc1.both
pc1.both ~ d*t.range
#indirect effect of precip, via pc1.both
pc1.both ~ e*precip
###
#indirect effect of mean temp, via pc2.both
pc2.both ~ f*t.mean
bird_N ~ l*pc2.both
#indirect effect of count of 5th quantile of t, via pc2.both
pc2.both ~ g*t.count.05
#indirect effect of count of 5th quantile of t, via pc2.both
pc2.both ~ h*t.count.95
#indirect effect of t. range, via pc2.both
pc2.both ~ i*t.range
#indirect effect of precip, via pc2.both
pc2.both ~ j*precip
###
#direct effect of mean t on bird
DE_t.mean:= m
#direct effect of t.count.05
DE_t.count.05:= n
#direct effect of t.count.95
DE_t.count.95:= o
#direct effect of range
DE_t.range:= p
#total direct effect of t
TDE_t:= m + n + o + p
#direct effect of precip (which is the total direct effect of precip)
TDE_precip:= q
#total direct effect of climate
TDE_climate:= m + n + o + p + q
###
#indirect effect of mean t, via pc1.both
IE_t.mean_pc1:= a*k
#indirect effect of t.count.05, via pc1.both
IE_t.count.05_pc1:= b*k
#indirect effect of t.count.95, via pc1.both
IE_t.count.95_pc1:= c*k
#indirect effect of t.range, via pc1.both
IE_t.range_pc1:= d*k
#total indirect effect of t via pc1.both
TIE_t_pc1:= (a*k)+(b*k)+(c*k)+(d*k)
#indirect effect of precp, via pc1.both
IE_precip_pc1:= e*k
###
#total indirect effect of climate via pc1.both
TIE_t_climate:= (a*k)+(b*k)+(c*k)+(d*k)+(e*k)
###
#indirect effect of mean t via pc2.both
IE_t.mean_pc2:= f*l
#indirect effect of t.count.05 via pc2.both
IE_t.count.05_pc2:= g*l
#indirect effect of t.count.95 via pc2.both
IE_t.count.95_pc2:= h*l
#indirect effect of t.range, via pc2.both
IE_t.range_pc2:= i*l
#total indirect effect of t via pc2.both
TIE_t_pc2:= (f*l)+(g*l)+(h*l)+(i*l)
#indirect effect of precip via pc2.both
IE_precip_pc2:= j*l
#total indirect effect of climate via pc2.both
TIE_t_climate:= (f*l)+(g*l)+(h*l)+(i*l)+(j*l)
####
#total effect of mean t on bird via all pathways
TE_t.mean:= m + (a*k) + (f*l)
#total effect of t.count.05 on bird via all pathways
TE_t.count.05:= n + (b*k) + (g*l)
#total effect of t.count.95 on bird via all pathways
TE_t.count.95:= o + (c*k) + (h*l)
#total effect of t.range on bird via all pathways
TE_t.range:= p + (d*k) + (i*l)
#total effect of precip via all pathways
TE_precip:= q + (e*k) + (j*l)
#total effect of t via all pathways
TE_t:= (m + (a*k) + (f*l)) + (n + (b*k) + (g*l)) + (o + (c*k) + (h*l)) + (p + (d*k) + (i*l))
#total effect of climate via all pathways
TE_climate:= (m + (a*k) + (f*l)) + (n + (b*k) + (g*l)) + (o + (c*k) + (h*l)) + (p + (d*k) + (i*l)) +(q + (e*k) + (j*l))
#####
#total indirect effect of t via veg (both pc1 and pc2)
TIE_t:= (a*k)+(b*k)+(c*k)+(d*k) + (f*l)+(g*l)+(h*l)+(i*l)
#total indirect effect of climate via veg (both pc1 and pc2)
TIE_t:= (a*k)+(b*k)+(c*k)+(d*k)+(e*k) + (f*l)+(g*l)+(h*l)+(i*l)+(j*l)
###
#specify any (residual) covariances
#t_mean ~~ t_min #as an example.
'