Hello all,
I am investigating measurement invariance in lavaan. The scale has 12 items and 4 factors. The items are on a 5-point likert scale, so I used the ordered command and am following the Wu & Estabrook (2016) method. To explain some of the syntax, I wanted to freely estimate the loadings of all items (versus fixing the first item in each factor).
The configural model produced normal output with no errors. However, when evaluating threshold invariance, I am getting NAs for the robust fit indices. No warnings or errors were produced. Can anyone point me to why the robust fit indices would not compute?
Syntax and relevant output below:
#model
ies3<-'
upe=~ NA*ies3_1 + ies3_2 + ies3_3
epr=~ NA*ies3_4 + ies3_5 + ies3_6
rhsc=~ NA*ies3_7 + ies3_8 + ies3_9
bfcc=~ NA*ies3_10 + ies3_11 + ies3_12
upe ~~ epr + rhsc + bfcc
epr ~~ rhsc + bfcc
rhsc ~~ bfcc
upe ~~ 1*upe
epr ~~ 1*epr
rhsc ~~ 1*rhsc
bfcc ~~ 1*bfcc
'
items<-c("ies3_1", "ies3_2", "ies3_3", "ies3_4", "ies3_5", "ies3_6", "ies3_7", "ies3_8", "ies3_9", "ies3_10", "ies3_11", "ies3_12")
#configural
config<-measEq.syntax(configural.model = ies3, data = ies3data, group="hfss_FI", group.equal="configural", parameterization="delta", ID.fac="
std.lv", ID.cat="Wu.Estabrook.2016",
ordered=items)
model.config <- as.character(config)
fit.config<-cfa(model.config, data=ies3data, group="hfss_FI", parameterization="delta", ordered=items)
summary(fit.config, fit.measures=T)
###output
lavaan 0.6-19 ended normally after 35 iterations
Estimator DWLS
Optimization method NLMINB
Number of model parameters 132
Number of observations per group: Used Total
1 276 303
0 686 718
Model Test User Model:
Standard Scaled
Test Statistic 218.778 402.833
Degrees of freedom 96 96
P-value (Chi-square) 0.000 0.000
Scaling correction factor 0.585
Shift parameter 28.644
simple second-order correction
Test statistic for each group:
1 96.052 96.052
0 306.781 306.781
Model Test Baseline Model:
Test statistic 63271.685 26585.675
Degrees of freedom 132 132
P-value 0.000 0.000
Scaling correction factor 2.387
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.998 0.988
Tucker-Lewis Index (TLI) 0.997 0.984
Robust Comparative Fit Index (CFI) 0.962
Robust Tucker-Lewis Index (TLI) 0.948
Root Mean Square Error of Approximation:
RMSEA 0.052 0.082
90 Percent confidence interval - lower 0.043 0.073
90 Percent confidence interval - upper 0.061 0.090
P-value H_0: RMSEA <= 0.050 0.371 0.000
P-value H_0: RMSEA >= 0.080 0.000 0.635
Robust RMSEA 0.083
90 Percent confidence interval - lower 0.073
90 Percent confidence interval - upper 0.094
P-value H_0: Robust RMSEA <= 0.050 0.000
P-value H_0: Robust RMSEA >= 0.080 0.709
Standardized Root Mean Square Residual:
SRMR 0.048 0.048
#threshold
thresh<-measEq.syntax(configural.model = ies3, data = ies3data, group="hfss_FI", group.equal="thresholds", parameterization="delta", ID.fac="
std.lv", ID.cat="Wu.Estabrook.2016",
ordered=items)
model.thresh<-as.character(thresh)
fit.thresh<-cfa(model.thresh, data=ies3data, group="hfss_FI", ordered = items)
summary(fit.thresh, fit.measures=T)
###threshold output
lavaan 0.6-19 ended normally after 81 iterations
Estimator DWLS
Optimization method NLMINB
Number of model parameters 156
Number of equality constraints 48
Number of observations per group: Used Total
1 276 303
0 686 718
Model Test User Model:
Standard Scaled
Test Statistic 229.941 411.621
Degrees of freedom 120 120
P-value (Chi-square) 0.000 0.000
Scaling correction factor 0.612
Shift parameter 35.713
simple second-order correction
Test statistic for each group:
1 106.799 106.799
0 304.822 304.822
Model Test Baseline Model:
Test statistic 63271.685 26585.675
Degrees of freedom 132 132
P-value 0.000 0.000
Scaling correction factor 2.387
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.998 0.989
Tucker-Lewis Index (TLI) 0.998 0.988
Robust Comparative Fit Index (CFI) NA
Robust Tucker-Lewis Index (TLI) NA
Root Mean Square Error of Approximation:
RMSEA 0.044 0.071
90 Percent confidence interval - lower 0.035 0.064
90 Percent confidence interval - upper 0.052 0.079
P-value H_0: RMSEA <= 0.050 0.887 0.000
P-value H_0: RMSEA >= 0.080 0.000 0.027
Robust RMSEA NA
90 Percent confidence interval - lower NA
90 Percent confidence interval - upper NA
P-value H_0: Robust RMSEA <= 0.050 NA
P-value H_0: Robust RMSEA >= 0.080 NA
Standardized Root Mean Square Residual:
SRMR 0.048 0.048