How i can improve my SEM mediation model fit

465 views
Skip to first unread message

Emmanuel Banda

unread,
Aug 7, 2018, 10:57:39 PM8/7/18
to lavaan
I have tried to make a few adjustments to this model but its failing give me the good fit even thought its able to give estimates. The first message its gives is some variances are negative. See the commands below and further the output.


semMed2 <- '
###Measuremement models
Underlying_causes =~bord+ m_educa+ mo_age
Basic_causes =~ HH_members+N_under5+ w_index

# direct effect
Haz ~ c*Basic_causes
# mediator
Underlying_causes ~ b*Basic_causes
Haz ~ a*Underlying_causes
# indirect effect
ab := a*b
# total effect
total := c + (a*b)
###Residual correlation
bord~~mo_age
mo_age~~HH_members
'
fitsem2 <- sem (semMed2, data=data4R, estimator = "MLR", test = "bootstrap")
summary (fitsem2, fit.measures=TRUE, standardized=TRUE)

Warning message:
In lav_object_post_check(object) :
  lavaan WARNING: some estimated ov variances are negative
> summary (fitsem2, fit.measures=TRUE, standardized=TRUE)
lavaan 0.6-2 ended normally after 94 iterations

  Optimization method                           NLMINB
  Number of free parameters                         18

  Number of observations                          3047

  Estimator                                         ML      Robust
  Model Fit Test Statistic                     815.270     820.407
  Degrees of freedom                                10          10
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  0.994
    for the Yuan-Bentler correction (Mplus variant)

Model test baseline model:

  Minimum Function Test Statistic             6493.250    5470.808
  Degrees of freedom                                21          21
  P-value                                        0.000       0.000

User model versus baseline model:

  Comparative Fit Index (CFI)                    0.876       0.851
  Tucker-Lewis Index (TLI)                       0.739       0.688

  Robust Comparative Fit Index (CFI)                         0.875
  Robust Tucker-Lewis Index (TLI)                            0.739

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)             -37374.708  -37374.708
  Scaling correction factor                                  1.428
    for the MLR correction
  Loglikelihood unrestricted model (H1)     -36967.072  -36967.072
  Scaling correction factor                                  1.273
    for the MLR correction

  Number of free parameters                         18          18
  Akaike (AIC)                               74785.415   74785.415
  Bayesian (BIC)                             74893.810   74893.810
  Sample-size adjusted Bayesian (BIC)        74836.616   74836.616

Root Mean Square Error of Approximation:

  RMSEA                                          0.163       0.163
  90 Percent Confidence Interval          0.153  0.172       0.154  0.173
  P-value RMSEA <= 0.05                          0.000       0.000

  Robust RMSEA                                               0.163
  90 Percent Confidence Interval                             0.153  0.172

Standardized Root Mean Square Residual:

  SRMR                                           0.091       0.091

Parameter Estimates:

  Information                                 Observed
  Observed information based on                Hessian
  Standard Errors                   Robust.huber.white

Latent Variables:
                       Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  Underlying_causes =~                                                      
    bord                  1.000                               2.833    1.408
    m_educa              -0.046    0.012   -3.825    0.000   -0.130   -0.211
    mo_age                1.338    0.129   10.401    0.000    3.791    0.571
  Basic_causes =~                                                           
    HH_members            1.000                               2.349    1.121
    N_under5              0.135    0.014    9.461    0.000    0.317    0.436
    w_index               0.084    0.008   10.503    0.000    0.197    0.141

Regressions:
                      Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  Haz ~                                                                    
    Basic_cass (c)       0.017    0.010    1.670    0.095    0.041    0.027
  Underlying_causes ~                                                      
    Basic_cass (b)       0.334    0.045    7.396    0.000    0.277    0.277
  Haz ~                                                                    
    Undrlyng_c (a)       0.005    0.005    1.015    0.310    0.015    0.010

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .bord ~~                                                               
   .mo_age            0.366    2.802    0.131    0.896    0.366    0.034
 .mo_age ~~                                                             
   .HH_members        2.573    0.222   11.583    0.000    2.573    0.445

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .bord             -3.978    1.991   -1.998    0.046   -3.978   -0.982
   .m_educa           0.360    0.011   32.998    0.000    0.360    0.955
   .mo_age           29.635    4.407    6.725    0.000   29.635    0.673
   .HH_members       -1.127    0.610   -1.847    0.065   -1.127   -0.257
   .N_under5          0.428    0.020   21.104    0.000    0.428    0.810
   .w_index           1.924    0.031   61.725    0.000    1.924    0.980
   .Haz               2.269    0.090   25.268    0.000    2.269    0.999
   .Underlying_css    7.412    1.988    3.728    0.000    0.923    0.923
    Basic_causes      5.516    0.669    8.243    0.000    1.000    1.000

Defined Parameters:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    ab                0.002    0.002    1.034    0.301    0.004    0.003
    total             0.019    0.010    1.886    0.059    0.045    0.030








Terrence Jorgensen

unread,
Aug 8, 2018, 6:50:18 AM8/8/18
to lavaan
Judging from your factor loadings, the measurement model does not look reasonable.  I'm guessing it is this model misspecification that is causing the error variances of your reference indicators to be negative. 

I can't tell exactly what all these indicators are, but some of the names seem like demographics (age, education), and your syntax labels them as sets of different types of causes.  Are you sure reflective measurement is appropriate?  Perhaps a formative "construct" is what you are looking for:





Terrence D. Jorgensen
Postdoctoral Researcher, Methods and Statistics
Research Institute for Child Development and Education, the University of Amsterdam

Reply all
Reply to author
Forward
0 new messages