this is my code:
modell1 <- "
Apz =~ (lam1)*acsi01.1 + (lam2)*acsi05.1 + (lam3)*acsi07.1 + (lam4)*acsi10.1
Cpz =~ (lam1)*ccsi01.1 + (lam2)*ccsi05.1 + (lam3)*ccsi07.1 + (lam4)*ccsi10.1
Hpz =~ (lam1)*hcsi01.1 + (lam2)*hcsi05.1 + (lam3)*hcsi07.1 + (lam4)*hcsi10.1
Ipz =~ (lam1)*icsi01.1 + (lam2)*icsi05.1 + (lam3)*icsi07.1 + (lam4)*icsi10.1
int =~ 1*Apz + 1*Cpz + 1*Hpz + 1*Ipz
s =~ 0*Apz + 15*Cpz + 27*HPz + 53*IPz
#intercepts
acsi01.1 ~ (alp1)*1; ccsi01.1 ~ (alp1)*1; hcsi01.1 ~ (alp1)*1; icsi01.1 ~(alp1)*1
acsi05.1 ~ (alp2)*1; ccsi05.1 ~ (alp2)*1; hcsi05.1 ~ (alp2)*1; icsi05.1 ~ (alp2)*1
acsi07.1 ~ (alp3)*1; ccsi07.1 ~ (alp3)*1; hcsi07.1 ~ (alp3)*1; icsi07.1 ~ (alp3)*1
acsi10.1 ~ (alp4)*1; ccsi10.1 ~ (alp4)*1; hcsi10.1 ~ (alp4)*1; icsi10.1 ~ (alp4)*1
#residual variances
acsi01.1 ~~ r*acsi01.1
ccsi01.1 ~~ r*ccsi01.1
hcsi01.1 ~~ r*hcsi01.1
icsi01.1 ~~ r*icsi01.1
acsi05.1 ~~ r*acsi05.1
ccsi05.1 ~~ r*ccsi05.1
hcsi05.1 ~~ r*hcsi05.1
icsi05.1 ~~ r*icsi05.1
acsi07.1 ~~ r*acsi07.1
ccsi07.1 ~~ r*ccsi07.1
hcsi07.1 ~~ r*hcsi07.1
icsi07.1 ~~ r*icsi07.1
acsi10.1 ~~ r*acsi10.1
ccsi10.1 ~~ r*ccsi10.1
hcsi10.1 ~~ r*hcsi10.1
icsi10.1 ~~ r*icsi10.1"
modell1_fit <- sem(modell1, newmydata, missing="fiml", estimator="mlr")
summary(modell1_fit, fit=TRUE)
I don`t really understand what and why I have to constrain or not..