Fwd: [Todos-l] Seminários de Estatística e Ciência de Dados - Departamento de Estatística (IME/UFBA)

0 views
Skip to first unread message

SONIA MARIA DA SILVA GOMES Gomes

unread,
May 6, 2022, 6:33:27 AM5/6/22
to labco...@googlegroups.com, João Jow, Hilton Aguiar, NETO VENANCIO, daniel k

Sonia Maria da Silva Gomes, Dra.
Professora Titular

Faculdade de Ciências Contábeis

Universidade Federal da Bahia
Av. Reitor Miguel Calmon, s/n - Vale do Canela 

CEP 40.110-903 - Salvador/Bahia/Brasil.

Telefone: 55 (71) 3283-8773 ou 988003959



---------- Forwarded message ---------
De: Estatistica <de...@ufba.br>
Date: qui., 5 de mai. de 2022 às 11:01
Subject: [Todos-l] Seminários de Estatística e Ciência de Dados - Departamento de Estatística (IME/UFBA)
To: <tod...@listas.ufba.br>


Prezados e Prezadas, bom dia!

Hoje teremos o Ciclo de Seminários de Estatística e Ciência de Dados do DEst. Nosso convidado é o professor  Luis Mauricio Castro Cepero do Departamento de Estatística da Pontificia Universidad Católica de Chile 

 

Segue abaixo os detalhes sobre o seminário!

____________________________________________________________ 

 

Title: Modelling Point Referenced Spatial Count Data: A Poisson Process Approach

Random fields are useful mathematical tools for representing natural phenomena with complex dependence structures in space and/or time. In particular, the Gaussian random field is  commonly used  due to its attractive properties and mathematical tractability. However, this assumption seems to be restrictive when dealing with counting data. To deal with this situation, we propose  a random field with a Poisson marginal distribution by considering a sequence of independent copies of a random field with an exponential marginal distribution as 'inter-arrival times' in the counting renewal processes framework. Our proposal can be viewed as a spatial generalization of the Poisson counting process. Unlike the classical hierarchical  Poisson Log-Gaussian model, our proposal generates a (non)-stationary random field that is mean square continuous and with Poisson marginal distributions. For the proposed Poisson spatial random field, analytic expressions for the covariance function and the bivariate distribution are provided. In an extensive simulation study, we investigate the weighted pairwise likelihood as a method for estimating  the Poisson random field parameters.
Finally, the effectiveness of our methodology is illustrated by an analysis  of reindeer pellet-group survey data,  where a zero-inflated version of the proposed model is compared with  zero-inflated  Poisson Log-Gaussian and   Poisson Gaussian copula  models.

Joint work with D. Morales, M. Bevilacqua and C. Caamaño.

 

Dia: 05 de maio de 2022

 

Hora: 14h00

 

Link: https://meet.google.com/djy-avfu-yub


Divulguem! Participem!


Lizandra C Fabio
Paulo Henrique F da Silva.
Coordenadores da atividade.

Giovana Oliveira Silva
Chefe do Departamento de Estatística
Universidade Federal da Bahia


Reply all
Reply to author
Forward
0 new messages