I am using the cooling process provided by KROME and turn on the "ATOMIC" option.
It is said that the bremsstrahlung cooling is implemented in the ATOMIC cooling.
However, I cannot find the implementation from the code although I found the cooling_Atomic function.
use krome_commons
use krome_subs
real*8::Tgas,cooling_atomic,n(:)
real*8::temp,T5,cool
temp = max(Tgas,10d0) !K
T5 = temp/1d5 !K
cool = 0d0 !erg/cm3/s
!COLLISIONAL IONIZATION: H, He, He+, He(2S)
cool = cool+ 1.27d-21*sqrt(temp)/(1.d0+sqrt(T5))&
*exp(-1.578091d5/temp)*n(idx_e)*n(idx_H)
cool = cool+ 9.38d-22*sqrt(temp)/(1.d0+sqrt(T5))&
*exp(-2.853354d5/temp)*n(idx_e)*n(idx_He)
cool = cool+ 4.95d-22*sqrt(temp)/(1.d0+sqrt(T5))&
*exp(-6.31515d5/temp)*n(idx_e)*n(idx_Hej)
cool = cool+ 5.01d-27*temp**(-0.1687)/(1.d0+sqrt(T5))&
*exp(-5.5338d4/temp)*n(idx_e)**2*n(idx_Hej)
!RECOMBINATION: H+, He+,He2+
cool = cool+ 8.7d-27*sqrt(temp)*(temp/1.d3)**(-0.2)&
/(1.d0+(temp/1.d6)**0.7)*n(idx_e)*n(idx_Hj)
cool = cool+ 1.55d-26*temp**(0.3647)*n(idx_e)*n(idx_Hej)
cool = cool+ 3.48d-26*sqrt(temp)*(temp/1.d3)**(-0.2)&
/(1.d0+(temp/1.d6)**0.7)*n(idx_e)*n(idx_Hejj)
!DIELECTRONIC RECOMBINATION: He
cool = cool+ 1.24d-13*temp**(-1.5)*exp(-4.7d5/temp)&
*(1.d0+0.3d0*exp(-9.4d4/temp))*n(idx_e)*n(idx_Hej)
!COLLISIONAL EXCITATION:
!H(all n), He(n=2,3,4 triplets), He+(n=2)
cool = cool+ 7.5d-19/(1.d0+sqrt(T5))*exp(-1.18348d5/temp)*n(idx_e)*n(idx_H)
cool = cool+ 9.1d-27*temp**(-.1687)/(1.d0+sqrt(T5))&
*exp(-1.3179d4/temp)*n(idx_e)**2*n(idx_Hej)
cool = cool+ 5.54d-17*temp**(-.397)/(1.d0+sqrt(T5))&
*exp(-4.73638d5/temp)*n(idx_e)*n(idx_Hej)
cooling_atomic = max(cool, 0d0) !erg/cm3/s
end function cooling_Atomic
!***********************
Could anyone help me find that?
Best regards,