I am working on a weighted version of SparseCategoricalCrossentropy. right now my implementation is converting y_true to one hot form and calculates the cross entropy then multiplies it with a weight matrix. I get the same output between my implementation and SparseCategoricalCrossentropy when weights are all 1 however my problem is with one hot encoding. I have a lot of classes (32+bg) and when using one hot encoding I run out of memory for large images/batch sizes which does not happen with SparseCategoricalCrossentropy. I am trying to figure out how is the built in one implemented (is there a way to avoid one hot encoding etc.). How is the built in one implemented or where is it implemented looking at [1] it is probably implemented on the native side but I can not find it?
[1] https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/keras/losses.py#L692
I am working on a weighted version of SparseCategoricalCrossentropy. right now my implementation is converting y_true to one hot form and calculates the cross entropy then multiplies it with a weight matrix. I get the same output between my implementation and SparseCategoricalCrossentropy when weights are all 1 however my problem is with one hot encoding. I have a lot of classes (32+bg) and when using one hot encoding I run out of memory for large images/batch sizes which does not happen with SparseCategoricalCrossentropy. I am trying to figure out how is the built in one implemented (is there a way to avoid one hot encoding etc.). How is the built in one implemented or where is it implemented looking at [1] it is probably implemented on the native side but I can not find it?
[1] https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/keras/losses.py#L692
--
You received this message because you are subscribed to the Google Groups "Keras-users" group.
To unsubscribe from this group and stop receiving emails from it, send an email to keras-users...@googlegroups.com.
To view this discussion on the web, visit https://groups.google.com/d/msgid/keras-users/d9c24bde-166f-4c7d-a118-3b864b9d8b4fn%40googlegroups.com.