I am pretty new to deep learning and keras and trying to build by own regression model. My model has vectors of length 41 as input and output is a 2 real number.
41 columns are the input and last 2 columns are the output.
model = Sequential()
model.add(Convolution2D(64 , 3 , 1,
border_mode = "same",
activation="relu",
input_shape=(1,41,1)))
model.add(Convolution2D(64 , 3 , 1,
border_mode = "same",
activation="relu"))
model.add(MaxPooling2D(pool_size=(3,1)))
model.add(Convolution2D(128 , 3 , 1,
border_mode = "same",
activation="relu"))
model.add(Convolution2D(128 , 3 , 1,
border_mode = "same",
activation="relu"))
model.add(MaxPooling2D(pool_size=(2,1)))
model.add(Convolution2D(256 , 3 , 1,
border_mode = "same",
activation="relu"))
model.add(Convolution2D(256 , 3 , 1,
border_mode = "same",
activation="relu"))
model.add(Convolution2D(256 , 3 , 1,
border_mode = "same",
activation="relu"))
model.add(MaxPooling2D(pool_size=(2,1)))
model.add(Flatten())
model.add(Dense(100, activation="relu"))
model.add(Dense(2))
model.compile(loss='mean_absolute_error', optimizer='adam', metrics=['accuracy'])
model.fit(X_train,Y_train,batch_size=10, nb_epoch=20 )
scores = model.evaluate(X_test, Y_test)
print((model.metrics_names[1], scores[1]*100))
I want to find a way to plot the observed versus the predicted using a graph. I know its very basic but I need some help.I would be very grateful.