VOCAB_DIM = 1024
EMBEDDING_DIM = 128
NUMBER_OF_SAMPLES = 256
MAX_SEQUENCE_LENGTH = 32
BATCH_SIZE = 16
model = Sequential()
model.add(Embedding(VOCAB_DIM, EMBEDDING_DIM, batch_size=BATCH_SIZE, input_length=MAX_SEQUENCE_LENGTH))
# Convolution layers
model.add(Reshape((1, MAX_SEQUENCE_LENGTH, EMBEDDING_DIM)))
model.add(Convolution2D(16, 3, 3, init='uniform', border_mode='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(16))
model.add(Dropout(dropout))
# Output layer
model.add(Dense(1))
model.add(Activation('sigmoid'))
# Build network
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['acc'])