Deepface Implementation in Keras

480 views
Skip to first unread message

vigneshwer dhinakaran

unread,
May 20, 2016, 5:39:20 AM5/20/16
to Keras-users
Hi All,

I am using keras distribution of locally connected layer (https://github.com/joelthchao/keras/blob/master/keras/layers/local.py) with WDB0400 database.


Model Architecture

        model = Sequential()
#Deepnet Archictecture
#c1
model.add(Convolution2D(nb_filter[0], nb_row[0], nb_col[0], border_mode=border_mode, input_shape=(no_of_channels,img_row,img_col),init=weight_init))
model.add(Activation(activation))
#m2
model.add(MaxPooling2D(pool_size = pool_size, strides = stride_size))
#c3
model.add(Convolution2D(nb_filter[1], nb_row[1], nb_col[1], border_mode=border_mode, init=weight_init))
model.add(Activation(activation))

#l4
model.add(LocallyConnected2D(nb_filter[2], nb_row[2], nb_col[2],border_mode=border_mode, init=weight_init))
model.add(Activation(activation))
# #l5
model.add(LocallyConnected2D(nb_filter[3], nb_row[3], nb_col[3],border_mode=border_mode, init=weight_init))
model.add(Activation(activation))
#L6         model.add(LocallyConnected2D(nb_filter[4], nb_row[4], nb_col[4],border_mode=border_mode, init=weight_init))
model.add(Activation(activation))
#Dropout
        model.add(Dropout(dropout_percent[0]))
model.add(Flatten())
#F7
model.add(Dense(output_fc[0],init=weight_init))
model.add(Activation(activation)) 
#normalization l2 
#F8
# model.add(Dense(output_fc[1],init=weight_init))
model.add(Dense(nb_classes, activation='softmax',init=weight_init))
#learning process
optimizer_sgd = SGD(lr=lr_rate, decay=1e-6, momentum=0.9, nesterov=True)

The probelm I am facing is I am not able to bring down the loss values or over fit the model. Is there any one who has implemented this paper in keras successfully.

Thanks

nitish bhardwaj

unread,
Jun 2, 2016, 3:30:15 AM6/2/16
to Keras-users
Could you please explain the parameters that you are using for this experiment?
Reply all
Reply to author
Forward
Message has been deleted
0 new messages