Hi Yosr,
I have added two more columns (with random values) to the dataset hence read_csv has usecols = [1,2,3] to turn it into a toy multivariate dataset.
This link describes the use of univariate time series but can be extended to the multivariate scenario by tweaking the code as below:
You might run into issue based on the versions of tensorflow and keras installed.
# convert an array of values into a dataset matrix
def create_dataset(dataset, look_back=1):
dataX, dataY = [], []
for i in range(len(dataset)-look_back-1):
a = dataset[i:(i+look_back), :]
dataX.append(a)
dataY.append(dataset[i + look_back, 0])
return numpy.array(dataX), numpy.array(dataY)
# fix random seed for reproducibility
numpy.random.seed(7)
# load the dataset
dataframe = read_csv('international-airline-passengers.csv', usecols=[1,2,3], engine='python', skipfooter=3)
dataset = dataframe.values
dataset = dataset.astype('float32')
print(dataset.shape)
# normalize the dataset
scaler = MinMaxScaler(feature_range=(0, 1))
dataset = scaler.fit_transform(dataset)
# split into train and test sets
train_size = int(len(dataset) * 0.67)
test_size = len(dataset) - train_size
train, test = dataset[0:train_size,:], dataset[train_size:len(dataset),:]
# reshape into X=t and Y=t+1
look_back = 2
trainX, trainY = create_dataset(train, look_back)
testX, testY = create_dataset(test, look_back)
print("Shape of trainX")
print(trainX.shape)
print("Shape of trainY")
print(trainY.shape)
# reshape input to be [samples, time steps, features]
trainX = numpy.reshape(trainX, (trainX.shape[0], look_back, trainX.shape[2]))
testX = numpy.reshape(testX, (testX.shape[0], look_back, testX.shape[2]))
# create and fit the LSTM network
model = Sequential()
model.add(LSTM(4, input_shape=(look_back,trainX.shape[2])))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(trainX, trainY, epochs=100, batch_size=1, verbose=2)
# make predictions
trainPredict = model.predict(trainX)
testPredict = model.predict(testX)
I have not corrected the code post this point, please invert the minmaxscaler and change how the plotting has to occur.
# invert predictions
trainPredict = scaler.inverse_transform(trainPredict)
trainY = scaler.inverse_transform([trainY])
testPredict = scaler.inverse_transform(testPredict)
testY = scaler.inverse_transform([testY])
# calculate root mean squared error
trainScore = math.sqrt(mean_squared_error(trainY[0], trainPredict[:,0]))
print('Train Score: %.2f RMSE' % (trainScore))
testScore = math.sqrt(mean_squared_error(testY[0], testPredict[:,0]))
print('Test Score: %.2f RMSE' % (testScore))
# shift train predictions for plotting
trainPredictPlot = numpy.empty_like(dataset)
trainPredictPlot[:, :] = numpy.nan
trainPredictPlot[look_back:len(trainPredict)+look_back, :] = trainPredict
# shift test predictions for plotting
testPredictPlot = numpy.empty_like(dataset)
testPredictPlot[:, :] = numpy.nan
testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)-1, :] = testPredict
# plot baseline and predictions
plt.plot(scaler.inverse_transform(dataset))
plt.plot(trainPredictPlot)
plt.plot(testPredictPlot)
plt.show()
I'm fairly new to this and I am not familiar with sklearn and matplotlib, and hence have not touched those part. Would recommend going through all the blogs in the website (machinelearningmastery), it does seem to be a good starting point for LSTM and time forecasting.
HTH.
Deepak