model = Sequential()
model.add(Convolution2D(32, 7, 7, border_mode='same', subsample=(2, 2), init='glorot_uniform', input_shape=(224, 224, 3))) # 112
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2))) # 56
model.add(Convolution2D(64, 3, 3, border_mode='same', subsample=(1, 1), init='glorot_uniform', )) # 28
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2))) # 14
model.add(Convolution2D(128, 3, 3, border_mode='same', subsample=(1, 1), init='glorot_uniform', ))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2))) # 14
model.add(Convolution2D(256, 3, 3, border_mode='same', subsample=(1, 1), init='glorot_uniform', ))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2))) # 14
model.add(Convolution2D(512, 3, 3, border_mode='same', subsample=(1, 1), init='glorot_uniform', ))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(7, 7))) # 7
model.add(Flatten()) # this converts our 3D feature maps to 1D feature vectors
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(10))
model.add(Activation('softmax'))
model.summary()
model.compile(loss='categorical_crossentropy',
optimizer='rmsprop',