2. I should run the inception without its imageNet weights with my dataset once. Then I save the weights and fine tune the last fully connected layers with the weights that I just save?
Using Theano backend.
Found 8144 images belonging to 196 classes.
Found 8041 images belonging to 196 classes.
Traceback (most recent call last):
File "<ipython-input-1-78d528fa154a>", line 1, in <module>
runfile('D:/Machine Learning/Models/Cal All/Inception.py', wdir='D:/Machine Learning/Models/Cal All')
File "D:\Anaconda2\lib\site-packages\spyder\utils\site\sitecustomize.py", line 866, in runfile
execfile(filename, namespace)
File "D:\Anaconda2\lib\site-packages\spyder\utils\site\sitecustomize.py", line 87, in execfile
exec(compile(scripttext, filename, 'exec'), glob, loc)
File "D:/Machine Learning/Models/Cal All/Inception.py", line 81, in <module>
x = Dense(1024, activation='relu')(x)
File "d:\git\keras\keras\engine\topology.py", line 470, in __call__
self.assert_input_compatibility(x)
File "d:\git\keras\keras\engine\topology.py", line 411, in assert_input_compatibility
str(K.ndim(x)))
Exception: Input 0 is incompatible with layer dense_1: expected ndim=2, found ndim=4