Hi,
Don't you think the actual code that produces this error, or at least the fit_generator call, might be needed to find out why the error is produced?
Include some code, my guess is that you are passing a float where an integer is expected.
I also met the samilar problem, I guess it is the bug of the keras, my problem is the following:
Epoch 1/1
--------------------------------------------------------------------------- TypeError Traceback (most recent call last) <ipython-input-49-a20e0c196bb1> in <module>() 3 for epoch in range(epochs): 4 #model.fit(x, y, batch_size=128, epochs=1) ----> 5 model.fit_generator(generator, steps_per_epoch=(len(sentences)//128), epochs=1) 6 on_epoch_end(model, epoch) C:\Anaconda3\envs\tensorflow\lib\site-packages\keras\legacy\interfaces.py in wrapper(*args, **kwargs) 89 warnings.warn('Update your `' + object_name + 90 '` call to the Keras 2 API: ' + signature, stacklevel=2) ---> 91 return func(*args, **kwargs) 92 wrapper._original_function = func 93 return wrapper C:\Anaconda3\envs\tensorflow\lib\site-packages\keras\models.py in fit_generator(self, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, class_weight, max_queue_size, workers, use_multiprocessing, shuffle, initial_epoch) 1313 use_multiprocessing=use_multiprocessing, 1314 shuffle=shuffle, -> 1315 initial_epoch=initial_epoch) 1316 1317 @interfaces.legacy_generator_methods_support C:\Anaconda3\envs\tensorflow\lib\site-packages\keras\legacy\interfaces.py in wrapper(*args, **kwargs) 89 warnings.warn('Update your `' + object_name + 90 '` call to the Keras 2 API: ' + signature, stacklevel=2) ---> 91 return func(*args, **kwargs) 92 wrapper._original_function = func 93 return wrapper C:\Anaconda3\envs\tensorflow\lib\site-packages\keras\engine\training.py in fit_generator(self, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, class_weight, max_queue_size, workers, use_multiprocessing, shuffle, initial_epoch) 2192 batch_index = 0 2193 while steps_done < steps_per_epoch: -> 2194 generator_output = next(output_generator) 2195 2196 if not hasattr(generator_output, '__len__'): C:\Anaconda3\envs\tensorflow\lib\site-packages\keras\utils\data_utils.py in get(self) 791 success, value = self.queue.get() 792 if not success: --> 793 six.reraise(value.__class__, value, value.__traceback__) C:\Anaconda3\envs\tensorflow\lib\site-packages\six.py in reraise(tp, value, tb) 691 if value.__traceback__ is not tb: 692 raise value.with_traceback(tb) --> 693 raise value 694 finally: 695 value = None C:\Anaconda3\envs\tensorflow\lib\site-packages\keras\utils\data_utils.py in _data_generator_task(self) 656 # => Serialize calls to 657 # infinite iterator/generator's next() function --> 658 generator_output = next(self._generator) 659 self.queue.put((True, generator_output)) 660 else: <ipython-input-8-6d57f856a2c2> in Generator(batch_size) 1 def Generator(batch_size=128): 2 while 1: ----> 3 for i in range(len(sentences)/batch_size-1): 4 x = np.zeros((batch_size, maxlen, len(chars)), dtype=np.bool) 5 y = np.zeros((batch_size, len(chars)), dtype=np.bool) TypeError: 'float' object cannot be interpreted as an integer
who can help me ?