LSTM to predict future values

369 views
Skip to first unread message

ukesh chawal

unread,
Jun 16, 2017, 10:28:16 AM6/16/17
to Keras-users

I am new to deep learning and LSTM. I have a very simple question. I have taken a sample of demands for 50 time steps and I am trying to forecast the demand value for the next 10 time steps (up to 60 time steps) using the same 50 samples to train the model.

But unfortunately, the closest I came is splitting the sample demands into 67 training % and 33 testing % and my forecast is only forecasting for the 33% (35 - 50 time steps), but it never goes beyond 50 time steps as shown in the picture below. Can anybody help me with this issue?

I have attached my code below.

Thank you in advance.

 

import pandas
import matplotlib.pyplot as plt
dataset = pandas.read_csv('Dmd2ahr.csv')
plt.plot(dataset)
plt.show()
# LSTM for international airline passengers problem with window regression framing
import numpy
import matplotlib.pyplot as plt
from pandas import read_csv
import math
from keras.models import Sequential
from keras.layers import Dropout
from keras.layers import Dense
from keras.layers import LSTM
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
# convert an array of values into a dataset matrix
def create_dataset(dataset, look_back=1):
dataX, dataY = [], []
for i in range(len(dataset)-look_back-1):
a = dataset[i:(i+look_back), 0]
dataX.append(a)
dataY.append(dataset[i + look_back, 0])
return numpy.array(dataX), numpy.array(dataY)
# fix random seed for reproducibility
numpy.random.seed(7)
# load the dataset
dataframe = read_csv('Dmd2ahr.csv')
dataset = dataframe.values
dataset = dataset.astype('float32')
# normalize the dataset
scaler = MinMaxScaler(feature_range=(0, 1))
dataset = scaler.fit_transform(dataset)
# split into train and test sets
train_size = int(len(dataset) * 0.7)
test_size = len(dataset) - train_size
train, test = dataset[0:train_size,:], dataset[train_size:len(dataset),:]
print(len(train), len(test))
# reshape into X=t and Y=t+1
look_back = 3
trainX, trainY = create_dataset(train, look_back)
testX, testY = create_dataset(test, look_back)


# reshape input to be [samples, time steps, features]

#trainX = numpy.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1]))
#testX = numpy.reshape(testX, (testX.shape[0], 1, testX.shape[1]))


# reshape input to be [samples, time steps, features]

trainX = numpy.reshape(trainX, (trainX.shape[0], trainX.shape[1], 1))
testX = numpy.reshape(testX, (testX.shape[0], testX.shape[1], 1))
# create and fit the LSTM network
model = Sequential()
model.add(LSTM(32, input_shape=(look_back, 1)))
model.add(Dropout(0.3))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam', metrics = ['accuracy'])
model.fit(trainX, trainY, epochs=300, batch_size=1, verbose=2)
# make predictions
trainPredict = model.predict(trainX)
testPredict = model.predict(testX)
# invert predictions
trainPredict = scaler.inverse_transform(trainPredict)
trainY = scaler.inverse_transform([trainY])
testPredict = scaler.inverse_transform(testPredict)
testY = scaler.inverse_transform([testY])
# calculate root mean squared error
trainScore = math.sqrt(mean_squared_error(trainY[0], trainPredict[:,0]))
print('Train Score: %.2f RMSE' % (trainScore))
testScore = math.sqrt(mean_squared_error(testY[0], testPredict[:,0]))
print('Test Score: %.2f RMSE' % (testScore))
# shift train predictions for plotting
trainPredictPlot = numpy.empty_like(dataset)
trainPredictPlot[:, :] = numpy.nan
trainPredictPlot[look_back:len(trainPredict)+look_back, :] = trainPredict
# shift test predictions for plotting
testPredictPlot = numpy.empty_like(dataset)
testPredictPlot[:, :] = numpy.nan
testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)-1, :] = testPredict
# plot baseline and predictions
plt.plot(scaler.inverse_transform(dataset))
plt.plot(trainPredictPlot)
plt.plot(testPredictPlot)
plt.show()
print (trainPredict)
print (testPredict)

 

Auto Generated Inline Image 1

donja...@gmail.com

unread,
Aug 15, 2017, 1:02:22 PM8/15/17
to Keras-users
Can you post your dataset?
Reply all
Reply to author
Forward
0 new messages