This is not the most elegant solution... but perhaps you can do something along the lines of:
import keras
import tensorflow as tf
from keras.layers import *
from keras.models import Model
i_3D = Input(shape=(10,64,64,3))
img = []
for i in range(10):
img.append(Lambda(lambda x: x[:,i])(i_3D))
con = []
for c in range(6):
con.append(Conv2D(1,(3,3),padding="same",name="con_"+str(c)))
A = []
for i in range(10):
a = img[i]
for c in range(6):
a = con[c](a)
A.append(a)
A = concatenate(A)
A = Lambda(lambda x: tf.transpose(x,[0,3,1,2]))(A)
model = Model(i_3D,A)