model=mlp() # contains one input layer in the format of dense, one hidden layer and one output layer.
weight_origin=model.layers[0].get_weights()[0]
model.fit(.....) # with adam optimizer
weight_updated=model.layers[0].get_weights()[0]
print weight_origin-weight_updatedmodel.layers[0].get_weights()[1] #get_weight() returns a list of weights