Hey Keras enthusiasts,
# -*- coding: utf-8 -*-"""Created on Mon Sep 4 00:32:17 2017
@author: Ben WORK ONLY"""
from keras.models import Sequentialfrom keras.layers import Dense, Dropout,Activationfrom keras.layers import Embeddingfrom keras.layers import Conv1D, GlobalAveragePooling1D, MaxPooling1D, Flatten, LSTMimport numpy as np
x_test = np.load('C:/Users/Ben WORK ONLY/PiCam/x_test.npy')x_train = np.load('C:/Users/Ben WORK ONLY/PiCam/x_train.npy')y_test = np.load('C:/Users/Ben WORK ONLY/PiCam/y_test.npy')y_train = np.load('C:/Users/Ben WORK ONLY/PiCam/y_train.npy')X_train = np.expand_dims(x_train, axis=2) X_test = np.expand_dims(x_test, axis=2)
model = Sequential()model.add(Conv1D(32, 12, input_shape=(1500, 1)))
model.add(Activation('relu'))
model.add(MaxPooling1D(3))
model.add(Conv1D(64, 12, activation='relu'))
model.add(MaxPooling1D(3))model.add(Conv1D(128, 12, activation='relu'))model.add(GlobalAveragePooling1D())
model.add(Dropout(0.5))model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
model.fit(X_train, y_train, batch_size=16, epochs=1)score = model.evaluate(X_test, y_test, batch_size=16)
#model.save('C:/Users/Ben WORK ONLY/PiCam/CNNlin_model.h5')--
You received this message because you are subscribed to the Google Groups "Keras-users" group.
To unsubscribe from this group and stop receiving emails from it, send an email to keras-users+unsubscribe@googlegroups.com.
To view this discussion on the web, visit https://groups.google.com/d/msgid/keras-users/04ff3358-d9a6-4fe8-b269-883449b8f1c1%40googlegroups.com.
For more options, visit https://groups.google.com/d/optout.
Layer (type) Output Shape Param # =================================================================conv1d_71 (Conv1D) (None, 1489, 32) 416 _________________________________________________________________max_pooling1d_45 (MaxPooling (None, 496, 32) 0 _________________________________________________________________conv1d_72 (Conv1D) (None, 485, 64) 24640 _________________________________________________________________max_pooling1d_46 (MaxPooling (None, 161, 64) 0 _________________________________________________________________conv1d_73 (Conv1D) (None, 150, 128) 98432 _________________________________________________________________global_average_pooling1d_22 (None, 128) 0 _________________________________________________________________dropout_22 (Dropout) (None, 128) 0 _________________________________________________________________dense_22 (Dense) (None, 1) 129 =================================================================Total params: 123,617Trainable params: 123,617Non-trainable params: 0_________________________________________________________________