model = Sequential()
model.add(LSTM(32,input_dim=4, return_sequences=True)) # returns a sequence of vectors of dimension 32
model.add(Dropout(0.5))
model.add(LSTM(32, return_sequences=False)) # returns a sequence of vectors of dimension 32
model.add(Dropout(0.5))
"""model.add(LSTM(32)) # return a single vector of dimension 32"""
model.add(Dense(1,input_dim=16))
model.add(Activation("softmax"))
model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
model.fit(x_t, y_t, batch_size=64, nb_epoch=200,
validation_split=0.2, show_accuracy=True)
predicted = model.predict(x_tt)
x_t is 4 dimension numeric normalized data
y_t is 1 and 0
However, I always get 1 in predicted results.
Could anyone help?