import glob, os
import sys
import ast
from os import listdir
from os.path import isfile, join
import numpy as np
import re
import itertools
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import seaborn as sb
from keras.utils import np_utils
from matplotlib import cm
from PIL import Image
from shutil import copyfile
import keras
from keras.models import Sequential
import scipy
from keras.layers.core import Dense, Activation, Lambda, Reshape,Flatten
from keras.layers.convolutional import Conv2D, MaxPooling2D, ZeroPadding2D, SeparableConv2D
#from keras.utils.visualize_util import plot
from keras.utils import np_utils
from keras.layers.advanced_activations import PReLU
from keras.layers.advanced_activations import ELU
from keras.layers import Dropout
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
from keras import backend as K
from keras.callbacks import ReduceLROnPlateau
from keras.callbacks import CSVLogger
from keras.callbacks import EarlyStopping
from sklearn.cross_validation import train_test_split
from sklearn.model_selection import KFold
from sklearn.preprocessing import MaxAbsScaler,MinMaxScaler
from keras.models import load_model
from skimage.util.shape import view_as_blocks
from keras.wrappers.scikit_learn import KerasRegressor
from keras.constraints import maxnorm
from sklearn.model_selection import GridSearchCV
import shutil, errno
import math
import pickle
def create_model(init_mode='uniform',activation_mode='linear',optimizer_mode="adam", activation_mode_conv = 'linear'):
model = Sequential()
model.add(ZeroPadding2D((6,4),input_shape=(6,3,3)))
model.add(Conv2D(filters = 32,kernel_size=(3,3) , activation=activation_mode_conv))
print model.output_shape
model.add(Conv2D(filters = 32, kernel_size=(3,3), activation=activation_mode_conv))
print model.output_shape
model.add(Conv2D(pool_size=(2,2),strides=(2,1)))
print model.output_shape
model.add(Conv2D(filters = 64, kernel_size=(3,3) , activation=activation_mode_conv))
print model.output_shape
model.add(Conv2D(filters = 64, kernel_size=(3,3) , activation=activation_mode_conv))
print model.output_shape
model.add(Conv2D(pool_size=(2,2),strides=(2,1)))
model.add(Flatten())
print model.output_shape
model.add(Dense(output_dim=32, input_dim=64, init=init_mode,activation=activation_mode))
model.add(Dense(output_dim=13, input_dim=50, init=init_mode,activation=activation_mode))
model.add(Dense(output_dim=1, input_dim=13, init=init_mode,activation=activation_mode))
model.add(Dense(output_dim=1, init=init_mode, activation=activation_mode))
#print model.summary()
model.compile(loss='mean_squared_error',optimizer=optimizer_mode)
return modelTo unsubscribe from this group and stop receiving emails from it, send an email to keras-users+unsubscribe@googlegroups.com.
To view this discussion on the web, visit https://groups.google.com/d/msgid/keras-users/7c3c7d31-0d86-49e5-b905-5b5977fd8fb0%40googlegroups.com.