As @Dan suggested, I switched from ‘local/nnet3/run_tdnn.sh’ to ‘local/chain/run_tdnn.sh’ in ‘aishell/s5’, after building a tree and it threw this exception “ Exception: Command exited with status 127: None exp/chain/tdnn_1a_sp/log/make_phone_lm.log”, I checked that ‘exp/chain/tdnn_1a_sp’ exists, but not ‘exp/chain/tdnn_1a_sp/log/make_phone_lm.log’
2019-02-26 17:01:21,015 [steps/nnet3/chain/train.py:327 - train - INFO ] Creating phone language-model
/bin/sh: 1: None: not found
Traceback (most recent call last):
File "steps/nnet3/chain/train.py", line 624, in main
train(args, run_opts)
File "steps/nnet3/chain/train.py", line 329, in train
lm_opts=args.lm_opts)
File "steps/libs/nnet3/train/chain_objf/acoustic_model.py", line 50, in create_phone_lm
tree_dir=tree_dir))
File "steps/libs/common.py", line 158, in execute_command
p.returncode, command))
Exception: Command exited with status 127: None exp/chain/tdnn_1a_sp/log/make_phone_lm.log gunzip -c exp/chain/tri6_7d_tree_sp/ali.1.gz exp/chain/tri6_7d_tree_sp/ali.2.gz exp/chain/tri6_7d_tree_sp/ali.3.gz exp/chain/tri6_7d_tree_sp/ali.4.gz exp/chain/tri6_7d_tree_sp/ali.5.gz exp/chain/tri6_7d_tree_sp/ali.6.gz exp/chain/tri6_7d_tree_sp/ali.7.gz exp/chain/tri6_7d_tree_sp/ali.8.gz exp/chain/tri6_7d_tree_sp/ali.9.gz exp/chain/tri6_7d_tree_sp/ali.10.gz exp/chain/tri6_7d_tree_sp/ali.11.gz exp/chain/tri6_7d_tree_sp/ali.12.gz exp/chain/tri6_7d_tree_sp/ali.13.gz exp/chain/tri6_7d_tree_sp/ali.14.gz exp/chain/tri6_7d_tree_sp/ali.15.gz exp/chain/tri6_7d_tree_sp/ali.16.gz exp/chain/tri6_7d_tree_sp/ali.17.gz exp/chain/tri6_7d_tree_sp/ali.18.gz exp/chain/tri6_7d_tree_sp/ali.19.gz exp/chain/tri6_7d_tree_sp/ali.20.gz exp/chain/tri6_7d_tree_sp/ali.21.gz exp/chain/tri6_7d_tree_sp/ali.22.gz exp/chain/tri6_7d_tree_sp/ali.23.gz exp/chain/tri6_7d_tree_sp/ali.24.gz exp/chain/tri6_7d_tree_sp/ali.25.gz exp/chain/tri6_7d_tree_sp/ali.26.gz exp/chain/tri6_7d_tree_sp/ali.27.gz exp/chain/tri6_7d_tree_sp/ali.28.gz exp/chain/tri6_7d_tree_sp/ali.29.gz exp/chain/tri6_7d_tree_sp/ali.30.gz \| ali-to-phones exp/chain/tri6_7d_tree_sp/final.mdl ark:- ark:- \| chain-est-phone-lm --num-extra-lm-states=2000 ark:- exp/chain/tdnn_1a_sp/phone_lm.fst
the previous parts of the log
./local/chain/run_tdnn.sh: creating neural net configs using the xconfig parser
tree-info exp/chain/tri6_7d_tree_sp/tree
steps/nnet3/xconfig_to_configs.py --xconfig-file exp/chain/tdnn_1a_sp/configs/network.xconfig --config-dir exp/chain/tdnn_1a_sp/configs/
nnet3-init exp/chain/tdnn_1a_sp/configs//init.config exp/chain/tdnn_1a_sp/configs//init.raw
LOG (nnet3-init[5.3.24~1-c948]:main():nnet3-init.cc:80) Initialized raw neural net and wrote it to exp/chain/tdnn_1a_sp/configs//init.raw
nnet3-info exp/chain/tdnn_1a_sp/configs//init.raw
nnet3-init exp/chain/tdnn_1a_sp/configs//ref.config exp/chain/tdnn_1a_sp/configs//ref.raw
LOG (nnet3-init[5.3.24~1-c948]:main():nnet3-init.cc:80) Initialized raw neural net and wrote it to exp/chain/tdnn_1a_sp/configs//ref.raw
nnet3-info exp/chain/tdnn_1a_sp/configs//ref.raw
nnet3-init exp/chain/tdnn_1a_sp/configs//ref.config exp/chain/tdnn_1a_sp/configs//ref.raw
LOG (nnet3-init[5.3.24~1-c948]:main():nnet3-init.cc:80) Initialized raw neural net and wrote it to exp/chain/tdnn_1a_sp/configs//ref.raw
nnet3-info exp/chain/tdnn_1a_sp/configs//ref.raw
2019-02-26 17:01:09,970 [steps/nnet3/chain/train.py:35 - <module> - INFO ] Starting chain model trainer (train.py)
steps/nnet3/chain/train.py --stage -10 --cmd --feat.online-ivector-dir exp/nnet3/ivectors_train_sp --feat.cmvn-opts --norm-means=false --norm-vars=false --chain.xent-regularize 0.1 --chain.leaky-hmm-coefficient 0.1 --chain.l2-regularize 0.00005 --chain.apply-deriv-weights false --chain.lm-opts=--num-extra-lm-states=2000 --egs.dir --egs.stage -10 --egs.opts --frames-overlap-per-eg 0 --egs.chunk-width 150,110,90 --trainer.num-chunk-per-minibatch 64 --trainer.frames-per-iter 1500000 --trainer.num-epochs 4 --trainer.optimization.num-jobs-initial 1 --trainer.optimization.num-jobs-final 1 --trainer.optimization.initial-effective-lrate 0.001 --trainer.optimization.final-effective-lrate 0.0001 --trainer.max-param-change 2.0 --cleanup.remove-egs true --feat-dir data/train_sp_hires --tree-dir exp/chain/tri6_7d_tree_sp --lat-dir exp/tri5a_sp_lats --dir exp/chain/tdnn_1a_sp
['steps/nnet3/chain/train.py', '--stage', '-10', '--cmd', '', '--feat.online-ivector-dir', 'exp/nnet3/ivectors_train_sp', '--feat.cmvn-opts', '--norm-means=false --norm-vars=false', '--chain.xent-regularize', '0.1', '--chain.leaky-hmm-coefficient', '0.1', '--chain.l2-regularize', '0.00005', '--chain.apply-deriv-weights', 'false', '--chain.lm-opts=--num-extra-lm-states=2000', '--egs.dir', '', '--egs.stage', '-10', '--egs.opts', '--frames-overlap-per-eg 0', '--egs.chunk-width', '150,110,90', '--trainer.num-chunk-per-minibatch', '64', '--trainer.frames-per-iter', '1500000', '--trainer.num-epochs', '4', '--trainer.optimization.num-jobs-initial', '1', '--trainer.optimization.num-jobs-final', '1', '--trainer.optimization.initial-effective-lrate', '0.001', '--trainer.optimization.final-effective-lrate', '0.0001', '--trainer.max-param-change', '2.0', '--cleanup.remove-egs', 'true', '--feat-dir', 'data/train_sp_hires', '--tree-dir', 'exp/chain/tri6_7d_tree_sp', '--lat-dir', 'exp/tri5a_sp_lats', '--dir', 'exp/chain/tdnn_1a_sp']
2019-02-26 17:01:10,033 [steps/nnet3/chain/train.py:273 - train - INFO ] Arguments for the experiment
{'alignment_subsampling_factor': 3,
'apply_deriv_weights': False,
'backstitch_training_interval': 1,
'backstitch_training_scale': 0.0,
'chunk_left_context': 0,
'chunk_left_context_initial': -1,
'chunk_right_context': 0,
'chunk_right_context_final': -1,
'chunk_width': '150,110,90',
'cleanup': True,
'cmvn_opts': '--norm-means=false --norm-vars=false',
'combine_sum_to_one_penalty': 0.0,
'command': None,
'compute_per_dim_accuracy': False,
'deriv_truncate_margin': None,
'dir': 'exp/chain/tdnn_1a_sp',
'do_final_combination': True,
'dropout_schedule': None,
'egs_command': None,
'egs_dir': None,
'egs_opts': '--frames-overlap-per-eg 0',
'egs_stage': -10,
'email': None,
'exit_stage': None,
'feat_dir': 'data/train_sp_hires',
'final_effective_lrate': 0.0001,
'frame_subsampling_factor': 3,
'frames_per_iter': 1500000,
'initial_effective_lrate': 0.001,
'input_model': None,
'l2_regularize': 5e-05,
'lat_dir': 'exp/tri5a_sp_lats',
'leaky_hmm_coefficient': 0.1,
'left_deriv_truncate': None,
'left_tolerance': 5,
'lm_opts': '--num-extra-lm-states=2000',
'max_lda_jobs': 10,
'max_models_combine': 20,
'max_objective_evaluations': 30,
'max_param_change': 2.0,
'momentum': 0.0,
'num_chunk_per_minibatch': '64',
'num_epochs': 4.0,
'num_jobs_final': 1,
'num_jobs_initial': 1,
'online_ivector_dir': 'exp/nnet3/ivectors_train_sp',
'preserve_model_interval': 100,
'presoftmax_prior_scale_power': -0.25,
'proportional_shrink': 0.0,
'rand_prune': 4.0,
'remove_egs': True,
'reporting_interval': 0.1,
'right_tolerance': 5,
'samples_per_iter': 400000,
'shrink_saturation_threshold': 0.4,
'shrink_value': 1.0,
'shuffle_buffer_size
'srand': 0,
'stage': -10,
'train_opts': [],
'tree_dir': 'exp/chain/tri6_7d_tree_sp',
'use_gpu': 'yes',
'xent_regularize': 0.1}