1) touch: cannot touch 'exp/chain/tdnn_2o/egs/.nodelete': No such file or directory -- pretty straight forward, egs folder does not exist on line 211
2)
steps/nnet3/chain/train_tdnn.sh: line 310: [: 1: unary operator expected
steps/nnet3/chain/train_tdnn.sh: line 311: [: 1: unary operator expected
Not sure why there is a error like this, but assume I can just ignore it.
3) Then it fails here:
steps/nnet3/chain/train_tdnn.sh: getting preconditioning matrix for input features.
queue.pl: 20 / 20 failed, log is in exp/chain/tdnn_2o/log/get_lda_stats.*.log
Then in log I get this
# Accounting: time=0 threads=1
# Finished at Wed Mar 2 21:58:56 UTC 2016 with status 255
# Running on node004
# Started at Wed Mar 2 21:58:54 UTC 2016
# nnet3-chain-acc-lda-stats --rand-prune=4.0 exp/chain/tdnn_2o/init.raw ark:exp/chain/tdnn_2o/egs/cegs.11.ark exp/chain/tdnn_2o/11.lda_stats
nnet3-chain-acc-lda-stats --rand-prune=4.0 exp/chain/tdnn_2o/init.raw ark:exp/chain/tdnn_2o/egs/cegs.11.ark exp/chain/tdnn_2o/11.lda_stats
WARNING (nnet3-chain-acc-lda-stats:Open():util/kaldi-table-inl.h:353) TableReader: failed to open stream exp/chain/tdnn_2o/egs/cegs.11.ark
ERROR (nnet3-chain-acc-lda-stats:SequentialTableReader():util/kaldi-table-inl.h:534) Error constructing TableReader: rspecifier is ark:exp/chain/tdnn_2o/egs/cegs.11.ark
ERROR (nnet3-chain-acc-lda-stats:SequentialTableReader():util/kaldi-table-inl.h:534) Error constructing TableReader: rspecifier is ark:exp/chain/tdnn_2o/egs/cegs.11.ark
[stack trace: ]
kaldi::KaldiGetStackTrace()
kaldi::KaldiErrorMessage::~KaldiErrorMessage()
kaldi::SequentialTableReader<kaldi::KaldiObjectHolder<kaldi::nnet3::NnetChainExample> >::SequentialTableReader(std::string const&)
nnet3-chain-acc-lda-stats(main+0x2e2) [0x82aace]
/lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0xf5) [0x2ae76f29bea5]
nnet3-chain-acc-lda-stats() [0x82a729]
So there are no exp/chain/tdnn_2o/egs/cegs.11.ark files in egs dir, but it has a lot of cegs_orig files.
root@master:/srv/train/kaldi/egs/speaktoit/s5# local/run_tdnn_2o.sh --stage 12 2>&1 | tee train.log
local/run_tdnn_2o.sh --stage 12
steps/nnet3/chain/train_tdnn.sh --stage -10 --apply-deriv-weights false --lm-opts --num-extra-lm-states=2000 --get-egs-stage -10 --minibatch-size 128 --egs-opts --frames-overlap-per-eg
0 --frames-per-eg 150 --num-epochs 8 --num-jobs-initial 3 --num-jobs-final 8 --splice-indexes -2,-1,0,1,2 -1,2 -3,3 -6,3 -6,3 --feat-type raw --cmvn-opts --norm-means=false --norm-var
s=false --initial-effective-lrate 0.001 --final-effective-lrate 0.0001 --max-param-change 1.0 --final-layer-normalize-target 0.5 --relu-dim 850 --cmd
queue.pl --remove-egs false data/t
rain_hires exp/chain/tri5_2o_tree exp/tri3b_lats_nodup exp/chain/tdnn_2o
steps/nnet3/chain/train_tdnn.sh: creating phone language-model
steps/nnet3/chain/train_tdnn.sh: creating denominator FST
copy-transition-model exp/chain/tri5_2o_tree/final.mdl exp/chain/tdnn_2o/0.trans_mdl
LOG (copy-transition-model:main():copy-transition-model.cc:62) Copied transition model.
am-info exp/chain/tdnn_2o/0.trans_mdl
steps/nnet3/chain/train_tdnn.sh: creating neural net configs
steps/nnet3/tdnn/make_configs.py --pool-type none --include-log-softmax=false --final-layer-normalize-target 0.5 --splice-indexes -2,-1,0,1,2 -1,2 -3,3 -6,3 -6,3 --feat-dim 40 --ivector-dim 0 --relu-dim 850 --num-targets 7343 --use-presoftmax-prior-scale false exp/chain/tdnn_2o/configs
Append(Offset(input, -2), Offset(input, -1), input, Offset(input, 1), Offset(input, 2))
steps/nnet3/chain/train_tdnn.sh: calling get_egs.sh
steps/nnet3/chain/get_egs.sh --frames-overlap-per-eg 0 --cmvn-opts --norm-means=false --norm-vars=false --feat-type raw --transform-dir exp/tri3b_lats_nodup --left-context 1 --right-context 1 --frames-per-iter 800000 --stage -10 --cmd
queue.pl --right-tolerance 10 --left-tolerance 5 --frames-per-eg 150 --frame-subsampling-factor 3 data/train_hires exp/chain/tdnn_2o exp/tri3b_lats_nodup exp/chain/tdnn_2o/egs
File data/train_hires/utt2uniq exists, so augmenting valid_uttlist to
include all perturbed versions of the same 'real' utterances.
steps/nnet3/chain/get_egs.sh: feature type is raw
steps/nnet3/chain/get_egs.sh: working out number of frames of training data
steps/nnet3/chain/get_egs.sh: working out feature dim
feat-to-dim 'ark,s,cs:utils/
filter_scp.pl --exclude exp/chain/tdnn_2o/egs/valid_uttlist data/train_hires/split15/1/feats.scp | apply-cmvn --norm-means=false --norm-vars=false --utt2spk=ark:data/train_hires/split15/1/utt2spk scp:data/train_hires/split15/1/cmvn.scp scp:- ark:- |' -
apply-cmvn --norm-means=false --norm-vars=false --utt2spk=ark:data/train_hires/split15/1/utt2spk scp:data/train_hires/split15/1/cmvn.scp scp:- ark:-
WARNING (feat-to-dim:Close():kaldi-io.cc:496) Pipe utils/
filter_scp.pl --exclude exp/chain/tdnn_2o/egs/valid_uttlist data/train_hires/split15/1/feats.scp | apply-cmvn --norm-means=false --norm-vars=false --utt2spk=ark:data/train_hires/split15/1/utt2spk scp:data/train_hires/split15/1/cmvn.scp scp:- ark:- | had nonzero return status 36096
steps/nnet3/chain/get_egs.sh: creating 1184 archives, each with 5329 egs, with
steps/nnet3/chain/get_egs.sh: 150 labels per example, and (left,right) context = (1,1)
steps/nnet3/chain/get_egs.sh: copying training lattices
steps/nnet3/chain/get_egs.sh: Getting validation and training subset examples.
steps/nnet3/chain/get_egs.sh: ... extracting validation and training-subset alignments.
... Getting subsets of validation examples for diagnostics and combination.
steps/nnet3/chain/get_egs.sh: Generating training examples on disk
steps/nnet3/chain/get_egs.sh: recombining and shuffling order of archives on disk
steps/nnet3/chain/get_egs.sh: removing temporary archives
steps/nnet3/chain/get_egs.sh: removing temporary lattices
steps/nnet3/chain/get_egs.sh: removing temporary alignments and transforms
steps/nnet3/chain/get_egs.sh: Finished preparing training examples
steps/nnet3/chain/train_tdnn.sh: getting preconditioning matrix for input features.
queue.pl: 20 / 20 failed, log is in exp/chain/tdnn_2o/log/get_lda_stats.*.log
May be I should try to use wsj version of script instead of run_tdnn_2o.sh, but not sure if it will fix this.