Le jeudi 29 septembre 2016 à 09:47 -0700, Min-Woong Sohn a écrit :
> As a followup, I realized that GLM put the interaction variable at
> the end of the estimates in the coeftable output. Is there any way I
> can preserve the order such that the variables are shown in order
> (e.g., LStat, Age, and LStat and Age intertion in that order).
What's the problem exactly with the output shown in the message below?
Don't you get the same result?
Regards
> > I think the problem is with third and higher order interactions.
> >
> > > It works fine for me although I am using the latest master
> > > version of GLM so I need to use fit(LmMod, formula,df)
> > >
> > > using RDatasets, GLM
> > > boston = dataset("MASS", "Boston")
> > >
> > > julia> cc=fit(LmMod,MedV ~ LStat+Age+LStat&Age, boston)
> > > DataFrameRegressionModel{LmMod{DensePredQR{Float64}},Float64}:
> > >
> > > Coefficients:
> > > Estimate Std.Error t value Pr(>|t|)
> > > (Intercept) 36.0885 1.46984 24.5528 < eps()
> > > LStat -1.39212 0.167456 -8.31335 8.8e-16
> > > Age -0.00072086 0.0198792 -0.0362621 0.9711
> > > LStat & LStat 0.00415595 0.0018518 2.24428 0.0252
> > >
> > >
> > > > How do you specify interactions and non-linear transforms using
> > > > the fomula for GLM? Something like y~x1*x2 + x2^2
> > > >
> > >
> >