Suppose I have six pairs of normal-tumor bams. Is this the right way to train and call SNPs?
jsm.py train --model snvmix2 --priors_file config/priors.cfg --initial_parameters_file config/params.cfg hg19.fa 1N.bam 1T.bam snvmix2.cfg
jsm.py train --model snvmix2 hg19.fa 2N.bam 2T.bam snvmix2.cfg
jsm.py train --model snvmix2 hg19.fa 3N.bam 3T.bam snvmix2.cfg
jsm.py train --model snvmix2 hg19.fa 4N.bam 4T.bam snvmix2.cfg
jsm.py train --model snvmix2 hg19.fa 5N.bam 5T.bam snvmix2.cfg
jsm.py train --model snvmix2 hg19.fa 6N.bam 6T.bam snvmix2.cfg
jsm.py classify --model snvmix2 --parameters_file snvmix2.cfg --out_file 1.jsm hg19.fa 1N.bam 1T.bam
jsm.py classify --model snvmix2 --parameters_file snvmix2.cfg --out_file 2.jsm hg19.fa 2N.bam 2T.bam
jsm.py classify --model snvmix2 --parameters_file snvmix2.cfg --out_file 3.jsm hg19.fa 3N.bam 3T.bam
jsm.py classify --model snvmix2 --parameters_file snvmix2.cfg --out_file 4.jsm hg19.fa 4N.bam 4T.bam
jsm.py classify --model snvmix2 --parameters_file snvmix2.cfg --out_file 5.jsm hg19.fa 5N.bam 5T.bam
jsm.py classify --model snvmix2 --parameters_file snvmix2.cfg --out_file 6.jsm hg19.fa 6N.bam 6T.bam
I presume in the output, rows with high p_AA_AB, p_AA_BB, p_AB_AA, p_AB_BB, p_BB_AA, p_BB_AB values are somatic mutations, right?