Çiçeksepeti Instant BQML

12 views
Skip to first unread message

Arda Karatas

unread,
Jul 3, 2025, 10:08:40 AMJul 3
to instant-bqml...@googlegroups.com, Alperen Aydoğan, Süleyman İrfan Dara, Furkan Yusuf Pek, Faruk Kayabasi, Oguzhan Kalfa, Gulsum Kok Akdemir, Irem Yucel, Egemen Bor, Melis Erbil
Selamlar,

Instant BQML kurulumunu bizim tarafta gerçekleştirdik. Pipeline'lar için gerekli parametreleri girerek örnek olarak add_to_card event'i için json dosyalarını oluşturduk.

Oluşan training ve prediction json dosyalarını CRMint App üzerine import ettik. Öncelikle Training pipeline'ını çalıştırdık ve ilgili model oluştu. Daha sonra, Prediction pipeline'ını çalıştırdık. Belirttiğimiz proje ve datasette tüm tablolar oluşturuldu. 

addcart_prob_performance_insights tablosu haricindeki tüm tablolarda veriler oluştu. Google Analytics üzerinde de Kitleler klasörü oluştu ama içerisindeki bilgiler boş gelmektedir. Tüm sürecin ekran görüntülerini ekte paylaşıyorum. GA üzerinde verileri boş görmemizin sebebi ne olabilir, süreç içerisinde yapmamız gereken farklı bir adım var mıdır?


İyi çalışmalar,

--

Arda KARATAŞ
Data & BI Analytic Engineer

Technology

E : arda.karatas@ciceksepeti.com                   
A : Istanbloom, Esentepe Mah. Zincirlikuyu, Kore Şehitleri Cad. No: 16/1 34394, İstanbul
            
CRMint_App.PNG
ModelDetails.PNG
InstantBQML_Pipelines.PNG
Kitleler.PNG
Kitleler_Detail.PNG
InsightsTable.PNG
ModelInterpretability.PNG
ModelEvaluation.PNG
ModelTraining.PNG
Prediction.PNG

Arda Karatas

unread,
Jul 3, 2025, 10:23:56 AMJul 3
to instant-bqml...@googlegroups.com, Alperen Aydoğan
Hello All,

I am also sharing the English version of my previous email.

We have successfully completed the Instant BQML setup on our end. By entering the required parameters for the pipelines, we created sample JSON files for the add_to_cart event.

The generated training and prediction JSON files were imported into the CRMint App. We first ran the training pipeline, which successfully created the model. Then, we executed the prediction pipeline. All related tables were created in the specified project and dataset.

Data was generated in all tables except for the addcart_prob_performance_insights table. Additionally, an “Audiences” folder was created in Google Analytics, but it appears to be empty. I am attaching screenshots of the entire process for your reference.

Could you please advise on why the data might not be appearing in GA? Is there any additional step we might have missed during the process?

Best Regards,
Arda KARATAŞ

Arda Karatas <arda.k...@ciceksepeti.com>, 3 Tem 2025 Per, 17:08 tarihinde şunu yazdı:

Arda Karatas

unread,
Jul 7, 2025, 7:20:00 AMJul 7
to instant-bqml...@googlegroups.com, Alperen Aydoğan, Faruk Kayabasi, Furkan Yusuf Pek, Gulsum Kok Akdemir, Irem Yucel, Süleyman İrfan Dara, Oguzhan Kalfa
Hi Team,

We have recently trained a model named addcart_prob_model_web using Instant BQML, aimed at predicting the probability of a product being added to cart on our web platform. The entire pipeline is running successfully through CRMint.

As we analyze the output, we have several questions regarding the model evaluation metrics and prediction-related tables that were automatically generated by the Instant BQML process.
  • Mean Absolute Error: 0.1222
  • Mean Squared Error: 0.0488
  • Mean Squared Log Error: 0.0246
  • Median Absolute Error: 0.0536
  • R² Score: 0.2212
Whether these metrics are within acceptable ranges for binary classification problems in e-commerce contexts (e.g., add-to-cart prediction)?

How should we interpret a relatively low R² score (0.22) – is this expected for behavioral models trained via Instant BQML?

Do you have any internal benchmarking data or best practices for interpreting these specific metrics when using Instant BQML?

After running the pipeline, the following tables were created:
  • addcart_prob_predictions_web
  • addcart_prob_scored_users_log_web
  • addcart_prob_uservaluemap_web
  • addcart_prob_performance_insights
  • addcart_prob_audience_boundaries_web
  • addcart_prob_calculated_fields
  • addcart_prob_calculated_session_id_timestamps
  • addcart_prob_calculated_visitors
  • addcart_prob_conversionvalues_web
  • addcart_prob_measurement_protocol_formatted_session_attribution_web
  • addcart_prob_measurement_protocol_formatted_web
A brief explanation of the purpose of each table and how they should be used in practice (e.g., final scores, diagnostic, attribution, input references).

Whether other auxiliary or optional tables could also be created depending on configuration.

And most importantly: is there an official Instant BQML documentation or guide that explains these table structures and their intended usage?

Best Regards,


Arda Karatas <arda.k...@ciceksepeti.com>, 3 Tem 2025 Per, 17:23 tarihinde şunu yazdı:

Arda Karatas

unread,
Jul 21, 2025, 12:08:20 PMJul 21
to instant-bqml...@googlegroups.com, Alperen Aydoğan, Faruk Kayabasi, Furkan Yusuf Pek, Gulsum Kok Akdemir, Irem Yucel, Süleyman İrfan Dara, Oguzhan Kalfa

Hi Team,

I wanted to follow up on the requests and questions I shared in my previous email. I’d appreciate it if you could let me know if there have been any updates on these matters.


Looking forward to your response.

Best regards,


Arda KARATAŞ
Data & BI Analytic Engineer

Technology

E : arda.karatas@ciceksepeti.com                   
A : Istanbloom, Esentepe Mah. Zincirlikuyu, Kore Şehitleri Cad. No: 16/1 34394, İstanbul
            


7 Tem 2025 Pzt, saat 14:19 tarihinde Arda Karatas <arda.k...@ciceksepeti.com> şunu yazdı:
Reply all
Reply to author
Forward
0 new messages