Unlike fossil fuels, renewable energy creates clean power without producing greenhouse gases (GHGs) as a waste product. By storing and using renewable energy, the system as a whole can rely less on energy sourced from the more greenhouse-gas emitting fuels like coal, natural gas or oil.
Pumped hydroelectric energy storage, or pumped hydro, stores energy in the form of gravitational potential energy of water. When demand is low, surplus electricity from the grid is used to pump water up into an elevated reservoir. When demand increases, the water is released to flow down through turbines to a lower reservoir, producing hydroelectric power for the grid as it does so.
Compressed air energy storage
Compressed air energy storage has been around since the 1870s as an option to deliver energy to cities and industries on demand. The process involves using surplus electricity to compress air, which can then be decompressed and passed through a turbine to generate electricity when needed.
This type of storage system can be used in conjunction with a wind farm, pulling in air and creating a high-pressure system in a series of enormous underground chambers. When wind speeds slow down or demand for electricity increases, the pressurised air is discharged to power turbines or generators.
Flywheel energy storage
Flywheel energy storage devices turn surplus electrical energy into kinetic energy in the form of heavy high-velocity spinning wheels. To avoid energy losses, the wheels are kept in a frictionless vacuum by a magnetic field, allowing the spinning to be managed in a way that creates electricity when required.
This technology has several advantages over conventional energy storage systems, such as direct electrical generation through contactless induction, little maintenance, long life, and few environmental effects.
Hydrogen electrolysis produces hydrogen gas by passing surplus electrical current through a chemical solution. This hydrogen gas is then compressed to be stored in underground tanks. When needed, this process can be reversed to produce electricity from the stored hydrogen.
Hydrogen can be physically stored as either a gas or liquid and even adhered directly to solids. As a gas, hydrogen storage requires high-pressure tanks, while liquid hydrogen requires storage at cryogenic temperatures to prevent it boiling back into a gas. Hydrogen may also be stored on the surface of solid materials (known as adsorption), or within them (known as absorption).
Last updated: 26 Jun 2023
The information in this article is intended as a factual explainer and does not necessarily reflect National Grid's strategic direction or current business activities.
Going off-grid? Think twice before you invest in a battery system. Compressed air energy storage is the sustainable and resilient alternative to batteries, with much longer life expectancy, lower life cycle costs, technical simplicity, and low maintenance. Designing a compressed air energy storage system that combines high efficiency with small storage size is not self-explanatory, but a growing number of researchers show that it can be done.
Compressed Air Energy Storage (CAES) is usually regarded as a form of large-scale energy storage, comparable to a pumped hydropower plant. Such a CAES plant compresses air and stores it in an underground cavern, recovering the energy by expanding (or decompressing) the air through a turbine, which runs a generator.
Unfortunately, large-scale CAES plants are very energy inefficient. Compressing and decompressing air introduces energy losses, resulting in an electric-to-electric efficiency of only 40-52%, compared to 70-85% for pumped hydropower plants, and 70-90% for chemical batteries.
The low efficiency is mainly since air heats up during compression. This waste heat, which holds a large share of the energy input, is dumped into the atmosphere. A related problem is that air cools down when it is decompressed, lowering electricity production and possibly freezing the water vapour in the air. To avoid this, large-scale CAES plants heat the air prior to expansion using natural gas fuel, which further deteriorates the system efficiency and makes renewable energy storage dependent on fossil fuels.
The main reason to investigate decentralised compressed air energy storage is the simple fact that such a system could be installed anywhere, just like chemical batteries. Large-scale CAES, on the other hand, is dependent on a suitable underground geology. Although there are more potential sites for large-scale CAES plants than for large-scale pumped hydropower plants, finding appropriate storage caverns is not as easy as was previously assumed.123
Compared to chemical batteries, micro-CAES systems have some interesting advantages. Most importantly, a distributed network of compressed air energy storage systems would be much more sustainable and environmentally friendly. Over their lifetimes, chemical batteries store only two to ten times the energy needed to manufacture them. 4 Small-scale CAES systems do much better than that, mainly because of their much longer lifespan.
Although the initial investment cost is estimated to be higher than that of a battery system (around $10,000 for a typical residential set-up), and although above-ground storage increases the costs in comparison to underground storage (the storage vessel is good for roughly half of the investment cost), a compressed air energy storage system offers an almost infinite number of charge and discharge cycles. Batteries, on the other hand, need to be replaced every few years, which makes them more expensive in the long run. 56
However, decentralised CAES also faces important challenges. The first is the system efficiency, which is a problem in large- and small-scale systems alike, and the second is the size of the storage vessel, which is especially problematic for small-scale CAES systems.
Both issues make small-scale CAES systems unpractical. Sufficient space for a large storage vessel is not always available, while a low storage efficiency requires a larger solar PV or wind power plant to make up for that loss, raising the costs and lowering the sustainability of the system.
To make matters worse, system efficiency and storage size are inversely related: improving one factor is often at the expense of the other. Increasing the air pressure minimizes the storage size but decreases the system efficiency, while using a lower pressure makes the system more energy efficient but results in a larger storage size. Some examples help illustrate the problem.
Such a system may indeed be beneficial in this context, especially because it has a much longer lifespan than chemical batteries. However, a similar configuration in an urban context with high energy use is obviously problematic. In another study, it was calculated that it would take a 65 m3 air storage tank to store 3 kWh of energy. This corresponds to a 13 metre long pressure vessel with a diameter of 2.5 metres, shown below. 8
Small-scale CAES systems with high pressures give the opposite results. For example, a configuration modelled for a typical household electrical use in Europe (6,400 kWh per year) operates at a pressure of 200 bar (almost 4 times higher than the pressure in large-scale CAES plants) and achieves a storage volume of only 0.55 m3, which is comparable to batteries. However, the electric-to-electric efficiency of this set-up is only 11-17%, depending on the size of the solar PV system. 9
These examples seem to suggest that compressed air energy storage makes no sense as a small-scale energy storage system, even with a reduction in energy demand. However, perhaps surprisingly to many, this is not the case.
Small-scale CAES systems cannot follow the same approach as large-scale CAES systems, which increase storage capacity and overall efficiency by using multi-stage compression with intercooling and multi-stage expansion with reheating. This method involves additional components and increases the complexity and cost, which is impractical for small-scale systems.
This leaves us with two low-tech strategies that can be followed to achieve similar storage capacity and energy efficiency as lead-acid batteries. First, we can design low pressure systems which minimize the temperature differences during compression and expansion. Second, we can design high pressure systems in which the heat and cold from compression and expansion are used for household applications.
In these systems, the electric-to-electric efficiency is very low. However, there are now several efficiencies to define, because the system also supplies heat and cold. 1011 Furthermore, this approach can make several electrical appliances unnecessary, such as the refrigerator, the air-conditioning, and the electric boiler for space and water heating. Since the use of these appliances is often responsible for roughly half of the electricity use in an average household, a small-scale CAES system with high pressure has lower electricity demand overall.
High pressure systems easily solve the issue of storage size. As we have seen, a higher air pressure can greatly reduce the size of a compressed air storage vessel, but only at the expense of increased waste heat. In a small-scale system that takes advantage of temperature differences to provide heating and cooling, this is advantageous. Therefore, high pressure systems are ideal for small-scale residential buildings, where storage space is limited and where there is a large demand for heat and cold as well as electricity. The only disadvantages are that high pressure systems require stronger and more expensive storage tanks, and that extra space is required for heat exchangers.
Heat and cold from compression and expansion can be distributed to heating or cooling devices by means of water or air. The setup of an air cycle heating and cooling system is very similar to a CAES system, except for the storage vessel. Air cycle heating and cooling has many advantages, including high reliability, ease of maintenance, and the use of a natural refrigerant, which is environmentally benign. 11
7fc3f7cf58