You do not have permission to delete messages in this group
Copy link
Report message
Show original message
Either email addresses are anonymous for this group or you need the view member email addresses permission to view the original message
to 情報論的学習理論と機械学習 (IBISML)
IBISMLメーリングリストメンバーの皆様
東京工業大学 情報理工学院 数理・計算科学系の小渕智之です。 下記セミナーを企画しました。奮って御参加下さい。 お近くにご興味のありそうな方がおられましたら転送して頂ければ幸いです。 宜しくお願い致します。 The talk will be given in English. -------------------------------------------------------------------------------------------- Speaker: Xiangming Meng (理研AIP) Schedule: 10/11(金) 15:05~(16:35) 場所:東工大大岡山キャンパス 西8号館-W1008 (Ookayama-campus, W8-W1008, Tokyo Tech.)
Title: A High-bias Low-variance Introduction to Approximate Bayesian Inference
Abstract: A variety of fundamental problems in information theory, computer science and statistical physics could be formulated as Bayesian inference. However, exact Bayesian inference is usually intractable in practical applications due to the curse of dimensionality. This talk is a brief introduction to various approximate inference methods with a particular focus on the expectation propagation (EP) algorithm. Specifically, we first introduce the variational inference framework and draw an analogy between the fields of computer science and statistical physics. Then, a tutorial introduction to expectation propagation is given using one toy example, along with some comparisons with belief propagation. Finally, a unified EP perspective on approximate message passing(AMP) as well as its extensions such as vector AMP (VAMP) and generalized AMP (GAMP) is briefly illustrated. --------------------------------------------------------------------------------------------