Obuchi
unread,Oct 27, 2023, 3:31:35 AM10/27/23Sign in to reply to author
Sign in to forward
You do not have permission to delete messages in this group
Either email addresses are anonymous for this group or you need the view member email addresses permission to view the original message
to 情報論的学習理論と機械学習 (IBISML)
IBISMLの皆様
京都大学 情報学研究科 システム科学専攻 情報数理システムの小渕です.
SISSAのSebastian Goldt氏が京都大学を訪れているということで下記セミナーを企画しました.
Goldt氏は,統計力学や高次元統計の手法を用いて,
人工及び生物ニューラルネットワークにおける
学習理論の研究を行っている非常にアクティブな若手研究者です.
対面のみでのセミナーとなりますが,興味の有る方は是非ご参加ください.
またよろしければ,興味のありそうな方への転送をお願いします.
--------------------------------------------------------------------------------------------
Speaker: Sebastian Goldt (SISSA)
Schedule: 11/24(Fri.) 13:15~(14:15)
Place: 京都大学吉田キャンパス 国際科学イノベーション棟 5階会議室(5a/5b) (Yoshida campus, SACI, Conference Rooms 5a/5b)
Title: The Gaussian world is not enough -- how training data shapes neural representations
Abstract:
What do neural networks learn from their data?
We discuss this question in two learning paradigms: supervised classification with feed-forward networks, and masked language modelling with transformers.
First, we give analytical and experimental evidence for a “distributional simplicity bias”,
whereby neural networks learn increasingly complex distributions of their inputs.
We then show that neural networks learn from the higher-order cumulants (HOCs) more efficiently
than lazy methods, and show how HOCs shape the learnt features.
We finally characterise the distributions that are learnt by single- and multi-layer transformers,
and discuss implications for designing efficient transformers.
--------------------------------------------------------------------------------------------