Google Groups no longer supports new Usenet posts or subscriptions. Historical content remains viewable.
Dismiss

4차원 내적의 의미??

49 views
Skip to first unread message

JongHoon Ryu

unread,
Jul 14, 1998, 3:00:00 AM7/14/98
to
선형 대수를 공부하다가 4차원 이상의 내적문제를 접하게 됐는데
3차원 까지는 직관적으로 이해 하다가도 4차원부터는 완전히 수식적으로
밖에 이해 할 수 없습니다.
어떻게 하면 , 수식이 아닌 "느낌"으로 , 4차원이상에서의 내적의 의미를
알 수 있을까요??
또 , inner product over complex field C 의 의미도 , 1차원 까지는
알겠지만 ,
2차원부터는 , 잘 모르겠습니다.


아래 글은 제가 sci.math 에 위와 같은 질문을 했을때의 답변인데 ,
별 대단한 내용은 없는 것 같습니다.


"JongHoon Ryu" <jhr...@hyowon.pusan.ac.kr> writes:

>i had a problem when i was studying linear algebra.
>what is the intuitive meaning of the multidimentional inner product?
>how can i see the 4 dimentional ( or more ) axes and convince myself
>that i can get the Fourier coefficient just by multiplying each of
>elements of two vectors and dividing them by norm of one ?

I don't know what would count as "intuitive meaning" for you.
But I conclude from your phrasing that you believe you already
have a grasp on the "intuitive meaning" of the 2-dimensional
inner product. In that case, you know all you need to know!
For, given two vectors in a Euclidian space of dimension 3
or more (or a Hilbert space), they always lie in a 2-dimensional
subspace, which inherits a Euclidian structure from the ambient
3-or-more-dimensional space.

Lee Rudolph


0 new messages