There's more great footage at the Earth Issues website, such as a race
between an electric car called the X1 against a Ferrari and a Porsche,
and underwater recharging of an GM EV1 battery.
http://earthissues.multiply.com/video/item/14
http://earthissues.multiply.com/video/item/15
The electric car dates back to the 1830s, when Robert Anderson of
Scotland invented the first crude electric carriage. Around 1900,
electric cars outsold all other types of cars in America. Why? Because
they did not have the vibration, smell and noise of gasoline cars and
required neither gear changes to drive nor much manual effort to start
(as with the hand crank on gasoline cars). The only good roads then
were downtown and most car travel was local, perfect for slow electric
vehicles with a limited range.
Now it's time to reinvent the electric car, for its convenience and
for the positive contribution it can make in terms of the environment
and global warming. Solar power and electric cars is a winning
combination. Let me explain. Wind and solar power is not continuous,
and this is where car batteries can help out, by storing electricity
at times of high supply, to feed electricity back into the grid when
supply is low. I can well imagine car batteries both drawing and
feeding power to/from the grid at night. Intelligent net metering will
assist with this.
How much solar power is needed for all this electricity? How much
surface does it take to supply solar energy? The following URL
displays an image with red squares showing how much surface needs to
be covered in theory by solar power facilities to generate enough
electricity to meet the entire demand of respectively the World,
Europe (EU-25) and Germany.
http://en.wikipedia.org/wiki/Image:Fullneed.jpg
In fact, "how much surface" should be rephrased into "how little
surface". Solar power alone could well provide enough energy for both
our current electricity needs and can supply the additional energy
needs to run our cars as well. Indeed, cars need not be bad from an
environmental perspective. In fact, the combination of cars and solar
power can be a winner for both. Again, let me explain.
Electricity can be stored in car batteries during the day, when cars
are parked under roofs that are covered with solar panels that
recharge the batteries. That could easily recharge the car battery
enough for the owners to drive home and still leave sufficient power
in the battery for other use. Note that 70% of Americans drive less
than 33 miles per day. Late afternoon, when most people return home,
they can plug their cars in at home for their own power use in the
evening. Many will even have sufficient energy left to feed power back
into the grid, selling electricity at top rates due to peak demand for
power in the evening. Even if the battery became fully discharged in
the evening, this still makes economic sense, as one can recharge
later from the grid (during the night or early in the morning) when
rates should be cheaper. Imagine there's a lot of wind during one part
of the night. The meter will indicate that this is a good time for
empty batteries to recharge. Conversely, when there is no wind in the
evening, one will be able to get top dollars for feeding electricity
back into the grid, pre-setting the battery to
keep enough charge to get to work in the morning. As discussed, the
car can then fully recharge from the solar panels on the roof of the
parking place at work.
Sounds far-fetched? I'm very impressed with the Tesla Roadster, which
has specs that many don't expect from electric cars, specifically an
acceleration from 0 to 60 in about 4 seconds and a top speed of over
130 mph. It also looks great! You can recharge the battery at night in
your garage and it will cost you as little a $2.50 in electricity for
a full recharge.
With the Tesla, you'll be able to drive up to 250 miles on one single
charge. This radius is achieved partly with regenerative braking that
stores energy produced when braking. Recharging an empty battery with
an EVSE system (operating at 70 amps) takes as little as 3.5 hours,
but it also comes with a mobile-charging kit that lets you charge from
any standard electrical outlet, e.g. in case you get stranded with an
empty battery. Anyway, this short recharge time allows one to feed
power back into the grid in the evening (when demand is high and
supply from solar power sources is low) and still recharge later at
night or early in the morning. Indeed, later at night rates are low,
so it makes sense to recharge then. If sufficient wind is blowing,
supply from wind turbines may be abundant in your area.
Electric cars requires less maintenance, since there are very few
moving parts; you don't need to change engine oil, filters, gaskets,
hoses, plugs, belts, there's no catalytic converter or exhaust pipe to
replace. However, cost still is an issue, the Tesla Roadster 2008
model has a pricetag of $92,000 and the battery pack warrenty is
limited (I think it's only warrented for 100,000 miles, while it does
cost thousands of dollars to replace). But battery cost is expected
to come down in future, while at the same time battery capacity and
performance is expected to increase over time.
http://teslamotors.com
Also have a look at Google's initiative on plug-in cars:
http://www.youtube.com/watch?v=oDjSbWTJbdo
Google still uses plug-in hybrids, but it sets a trend away from using
fossil fuel. There are also ethanol-electric hybrid cars; more than a
year ago, Saab (General Motors Swedish car unit) already showcased
such a car, combining an electric motor with an E85 Ethanol engine.
http://www.forbes.com/finance/feeds/afx/2006/03/23/afx2616065.html
Google.org has issued a request for proposals to the tune of $10
million in order to advance sustainable transportation solutions.
http://blog.google.org/2007/09/drivers-start-your-batteries.html
Let me also pass on some links to the Rocky Mountain Institute in
Colorado, at:
https://www.rmi.org/
They envisage a "Hypercar," made of ultralight, super-strong, carbon
composite material, which is 12x as strong as steel on impact.
Manufacturing cars and trucks using these materials would dramatically
increast the range of electrical cars.
http://www.rmi.org/sitepages/pid191.php
http://www.fiberforge.com/
Hydrogen is another way to store energy and is also promising in
expanding the range of electric cars.
https://www.rmi.org/images/PDFs/Energy/U02-02_CleanerGreener.pdf (1.59
MB)
In conclusion: Just like we shouldn't rely on any single source of
power (we should use wind, hydro, solar power and more), we shouldn't
rely on a single way of storing power either. Apart from using car
batteries for storage, we could use the Great Lakes as a reservoir not
only of water, but also of power. At times of peak supply of wind and
solar power, surplus power could be used to pump water back from a
lower to a higher lake, in order to use hydro-power at times when
supply of other types of power is low. Free markets are good in
sorting out which technology works best where and when. I have no
doubts that the nuclear alternative will be prohibitively expensive
once risk factors are better taken into account (accidents, waste
management, terrorism, etc).
Cheers!
Sam Carana