bin <- .25*(1:3)
xi <- quantile(m$effect.size, bin)
qplot(effect.size, data = m, geom = 'histogram',
fill = a, main = 'Frequency Distribution') +
geom_vline(xintercept = xi) +
theme_bw() + labs(x = 'e', y = 'f', fill = 'e') +
scale_fill_brewer(type = 'seq')
# straight reversal
fills <- rev(brewer.pal(5, 'Blues'))
qplot(effect.size, data = m, geom = 'histogram',
fill = a, main = 'Frequency Distribution') +
geom_vline(xintercept = xi) +
theme_bw() + labs(x = 'e', y = 'f', fill = 'e') +
scale_fill_manual(values = fills)
# darker
fills <- rev(brewer.pal(7, 'Blues'))[1:5]
qplot(effect.size, data = m, geom = 'histogram',
fill = a, main = 'Frequency Distribution') +
geom_vline(xintercept = xi) +
theme_bw() + labs(x = 'e', y = 'f', fill = 'e') +
scale_fill_manual(values = fills)
# in general
fills <- c('red','green','blue','purple','orange')
qplot(effect.size, data = m, geom = 'histogram',
fill = a, main = 'Frequency Distribution') +
geom_vline(xintercept = xi) +
theme_bw() + labs(x = 'e', y = 'f', fill = 'e') +
scale_fill_manual(values = fills)
Cheers
david.
PS - nice to see ggplot2 has made it into the Psych department at Rice!