Is there a way to get the document vectors of unseen and seen documents from Doc2Vec in the gensim 0.11.1 version?
For example, suppose I trained the model on 1000 thousand -
Regards
Lev
model = Doc2Vec()
inferred_vector = model.infer_vector([test_corpus[doc_id]], steps=20, alpha=0.025)
print (model.most_similar([inferred_vector], topn=len(model.docvecs)))File "C:/Users/iman/PycharmProjects/untitled/b.py", line 53, in <module> inferred_vector = model.infer_vector([test_corpus[doc_id]], steps=4, alpha=0.025) File "C:\Python27\lib\site-packages\gensim\models\doc2vec.py", line 758, in infer_vector doctag_vectors[0] = self.seeded_vector(' '.join(doc_words)) TypeError: sequence item 0: expected string, list found
| Ivan Menshikh |
inferred_vector = model.infer_vector(test_corpus[doc_id], steps=20, alpha=0.025)