Hi all,
We
are running a multivariate GWAS analysis using the userGWAS()
function on a cluster, processing 12 phenotypes.
CFA_model <- 'F1 =~ 0.99*Foldingindex + 0.94*Intrinsic + 0.89*SA + 0.84*LGI + 0.67*Volume
F2 =~ 1.05*Meancurvature + 0.59*Gaussiancurvature
F3 =~ -0.79*OD + 0.28*FA + 0.95*ICVF
F4 =~ 0.83*MD + 1.01*ISOVF
Foldingindex ~~ 0.01*Foldingindex
Intrinsic ~~ 0.12*Intrinsic
SA ~~ 0.22*SA
LGI ~~ 0.29*LGI
Volume ~~ 0.56*Volume
Meancurvature ~~ 0.00*Meancurvature
Gaussiancurvature ~~ 0.66*Gaussiancurvature
OD ~~ 0.38*OD
FA ~~ 0.10*FA
ICVF ~~ 0.92*ICVF
MD ~~ 0.32*MD
ISOVF ~~ 0.00*ISOVF
F1 ~~ 1*F1
F2 ~~ 1*F2
F3 ~~ 1*F3
F4 ~~ 1*F4
F1 ~ SNP
F2 ~ SNP
F3 ~ SNP
F4 ~ SNP'
CorrelatedFactors<-userGWAS(covstruc = LDSCoutput,
SNPs = NI_sumstats,
model = CFA_model,
sub=c("F1 ~ SNP",
"F2 ~ SNP",
"F3 ~ SNP",
"F4 ~ SNP"),
smooth_check=TRUE,
fix_measurement=TRUE,
Q_SNP=TRUE,
#parallel=TRUE,
cores = cores,
toler=1e-60)
All steps ran smoothly, except for a warning related to lavaan affecting ~44% of our total SNPs: "lavaan->lav_lavaan_step11_estoptim(): Model estimation FAILED! Returning starting values." The error columns are all 0s, but we are unsure what this warning means,
especially since it appears for nearly half of the SNPs.
We would
appreciate any guidance on how to interpret and handle this warning,
since we are interested in obtaining sumstats specific to each of these 4
factors.
Thanks a lot in advance (and thanks for such a great package!)
Patricia