Class work #9 and 10 -- Graph algorithms

14 views
Skip to first unread message

Akif Eyler

unread,
Apr 30, 2019, 12:46:34 AM4/30/19
to BLM
Class work #9  (do NOT send me anything today)

Apr 30  First version of the project must be in your repo
==========================================

Graph algorithms

Consider the weighted graph G = (V, E) defined in the attached file
 
* Show that 3 colors are sufficient to color G
tutorialspoint.com/graph_theory/graph_theory_coloring.htm

* Find a minimum spanning tree in G -- is it unique?
https://www.wikiwand.com/en/Minimum_spanning_tree

* Find a shortest path from node a to node j

* Find a Hamiltonian circuit (cycle) in G
mathworld.wolfram.com/HamiltonianCycle.html

* Show that G does not contain an Eulerian circuit
mathworld.wolfram.com/EulerianCycle.html

* Modify G by adding an edge and removing an edge so that G' contains an Eulerian circuit

* Which problems cited above are NP-complete?

_Akif_Eyler_



Akif Eyler

unread,
Apr 30, 2019, 12:49:51 AM4/30/19
to BLM
G = (V, E) 

graph.jpg

Akif Eyler

unread,
May 6, 2019, 11:10:57 PM5/6/19
to BLM
Bugün 11-13 arasında son sınıf çalışması yapılacak

Class work #10 -- cevabınızı saat 13'e kadar mail içinde gönderin

Ekteki dosyada tanımlanan G1 ve G2 için aşağıdaki soruları ayrı ayrı cevaplayın

* Decide if 3 colors are sufficient to color G

* Find a minimum spanning tree in G
* Find a Hamiltonian circuit (cycle) in G
* Decide if G contains an Eulerian circuit

_Akif_Eyler_

CW10.doc

Akif Eyler

unread,
May 13, 2019, 3:37:42 AM5/13/19
to BLM
CW10 çözümü ekte -- finalde benzeri bir soru olacak

Cycle: path starting and ending at the same vertex (same as circuit)
Tree: graph with no cycle
Spanning tree: tree containing all vertices (no cycles)
Eulerian cycle goes through each edge once (all degrees must be even)
Hamiltonian cycle goes through each vertex once (no good algorithm)


---------
From: Celil Reha ESGICE
Date: Tue, May 7, 2019 at 12:34 PM
To: Akif Eyler 


1-) G1:3 colors are not enough               G2: 2 colors enough
2-) MST are shown 
3-) G1: Hamiltonian circuit is shown     G2: There is no Hamiltonian circuit
4-) G1: There is no Eulerian circuit        G2: Eulerian circuit is shown 

CW10.doc
Reply all
Reply to author
Forward
0 new messages