Revision: 2631
http://sourceforge.net/p/fricas/code/2631
Author: whebisch
Date: 2020-03-04 17:39:33 +0000 (Wed, 04 Mar 2020)
Log Message:
-----------
Whitespace cleanup
Modified Paths:
--------------
trunk/src/algebra/distro.spad
trunk/src/algebra/fr.spad
trunk/src/algebra/fs2ups.spad
trunk/src/algebra/genups.spad
trunk/src/algebra/integrat.spad
trunk/src/algebra/pf.spad
trunk/src/algebra/tex.spad
Modified: trunk/src/algebra/distro.spad
===================================================================
--- trunk/src/algebra/distro.spad 2020-03-04 17:00:29 UTC (rev 2630)
+++ trunk/src/algebra/distro.spad 2020-03-04 17:39:33 UTC (rev 2631)
@@ -325,7 +325,7 @@
++ \spad{jacobi2poly(aa, bb)} returns the stream
++ of orthogonal polynomials corresponding to the
++ Jacobi parameters \spad{a_n} and \spad{b_n}.
-
+
if R has Algebra Fraction Integer then
moment2Stransform : Sequence R -> STRREC
++ \spad{moment2Stransform(x)} returns the Puiseux and Laurent order
@@ -590,7 +590,7 @@
distributionBySTransform(S : UPSR) : DISTR ==
laurS : ULSR := laurentRep(S)$UPSR
- taylS : UTSR := taylorRep laurS
+ taylS : UTSR := taylorRep laurS
distributionBySTransform(rationalPower S, order S, sequence coefficients taylS)
)abbrev category DISTCAT DistributionCategory
@@ -641,7 +641,7 @@
hankelDeterminants : % -> Stream R
++ \spad{hankelDeterminants(x)} returns the stream of hankel
++ determinants of the distribution \spad{x}.
-
+
if R has Algebra Fraction Integer then
-- monotoneCumulant : (%, PI) -> R
-- ++ \spad{monotoneCumulant(x, n)} returns the n-th monotone cumulant
@@ -781,7 +781,7 @@
++ \spad{freeMultiplicativeConvolution(mu, nu)} computes
++ the free multiplicative convolution of the distributions
++ \spad{mu} and \spad{nu}.
-
+
Implementation ==> add
Rep := Record(moments : Sequence R, ccumulants : Sequence R,
fcumulants : Sequence R, bcumulants : Sequence R)
@@ -1004,13 +1004,13 @@
orthogonalConvolution(x, y) ==
Bx:Stream R := stream booleanCumulants x
zMy:Stream R := cons(0,cons(1, stream moments y))
- Bxy := compose(Bx, zMy)$STSOR
+ Bxy := compose(Bx, zMy)$STSOR
distributionByBooleanCumulants Bxy
subordinationConvolution(x, y) ==
Rx:Stream R := stream freeCumulants x
zMy:Stream R := cons(0,cons(1, stream moments y))
- Rxy := compose(Rx, zMy)$STSOR
+ Rxy := compose(Rx, zMy)$STSOR
distributionByFreeCumulants Rxy
)abbrev package DISTPOL DistributionPolynomialPackage
Modified: trunk/src/algebra/fr.spad
===================================================================
--- trunk/src/algebra/fr.spad 2020-03-04 17:00:29 UTC (rev 2630)
+++ trunk/src/algebra/fr.spad 2020-03-04 17:39:33 UTC (rev 2631)
@@ -436,7 +436,7 @@
for f in lf repeat
fg := f.flag
if fg case "nil" then
- return false
+ return false
true
gcd1(lu : List(FF), lv : List(FF)) : % ==
@@ -465,7 +465,7 @@
ev := ev + f.exponent*qcoerce(tr(j, i))
ev = 0 => "iterate"
res := cons([fg, nf, min(eu, ev)]$FF, res)
- res := sort!(LispLessP, res)
+ res := sort!(LispLessP, res)
mkFF(1, res)
gcd(u, v) ==
Modified: trunk/src/algebra/fs2ups.spad
===================================================================
--- trunk/src/algebra/fs2ups.spad 2020-03-04 17:00:29 UTC (rev 2630)
+++ trunk/src/algebra/fs2ups.spad 2020-03-04 17:39:33 UTC (rev 2631)
@@ -626,7 +626,7 @@
xx := monomial(1, 1)$UTS
cxx := exp(xx)$UTS
do_Ei00(xx, cxx, lc, k, lx, ups1, ups)
-
+
do_Chi0(lc : FE, k : FE, lx : FE, ups1 : UPS, ups : UPS) : Result ==
xx := monomial(1, 1)$UTS
chxx := cosh(xx)$UTS
Modified: trunk/src/algebra/genups.spad
===================================================================
--- trunk/src/algebra/genups.spad 2020-03-04 17:00:29 UTC (rev 2630)
+++ trunk/src/algebra/genups.spad 2020-03-04 17:39:33 UTC (rev 2631)
@@ -11,7 +11,7 @@
++ \spadtype{GenerateUnivariatePowerSeries} provides functions that create
++ power series from explicit formulas for their \spad{n}th coefficient.
GenerateUnivariatePowerSeries1(R) : Exports == Implementation where
- R : Ring
+ R : Ring
ANY1 ==> AnyFunctions1
EQ ==> Equation
I ==> Integer
Modified: trunk/src/algebra/integrat.spad
===================================================================
--- trunk/src/algebra/integrat.spad 2020-03-04 17:00:29 UTC (rev 2630)
+++ trunk/src/algebra/integrat.spad 2020-03-04 17:39:33 UTC (rev 2631)
@@ -29,7 +29,7 @@
import from List(Kernel(FG))
import from List(SY)
import from BasicOperator
-
+
RTRIG := 'rtrig
internalIntegrate(f, x) ==
Modified: trunk/src/algebra/pf.spad
===================================================================
--- trunk/src/algebra/pf.spad 2020-03-04 17:00:29 UTC (rev 2630)
+++ trunk/src/algebra/pf.spad 2020-03-04 17:39:33 UTC (rev 2631)
@@ -74,7 +74,7 @@
r : NNI := 0
while cGS rem 2 = 0 repeat
cGS := cGS quo 2
- r := r+1
+ r := r+1
r
twoPower: % -> NNI
@@ -86,7 +86,7 @@
r : NNI := 0
while ord rem 2 = 0 repeat
ord := ord quo 2
- r := r+1
+ r := r+1
r
initializePrimitiveElement : () -> Void
++ initializePrimitiveElement() initializes the computation of a
@@ -113,8 +113,8 @@
base : % := primitiveElement() ^ (cyclicGroupSize quo primeDivisor)
l : Integer := length primeDivisor
n : Integer := if odd? l
- then n := shift(primeDivisor, -(l quo 2))
- else n := shift(1, (l quo 2))
+ then n := shift(primeDivisor, -(l quo 2))
+ else n := shift(1, (l quo 2))
if n < limit then
d := (primeDivisor - 1) quo limit + 1
n := (primeDivisor - 1) quo d + 1
@@ -134,18 +134,18 @@
found? : Boolean := false
q : I := 1
while not found? repeat
- q := q+1
- found? := jacobi(q, p)$IntegerNumberTheoryFunctions = -1
+ q := q+1
+ found? := jacobi(q, p)$IntegerNumberTheoryFunctions = -1
q :: %
sqrt(x: %): % ==
zero? x => x
jacobi(convert(x)@I, p)$IntegerNumberTheoryFunctions = -1 =>
- error "sqrt: argument does not have a square root by Jacobi symbol."
+ error "sqrt: argument does not have a square root by Jacobi symbol."
3 = (p rem 4) =>
- y : % := x ^ ((p+1) quo 4)
+ y : % := x ^ ((p+1) quo 4)
-- we choose the smaller one of y and -y of their canonical
-- representatives in 0..p-1
- if convert(y)@I < convert(-y)@I then y else -y
+ if convert(y)@I < convert(-y)@I then y else -y
-- now we must have 1 = (p rem 4) and jacobi(x,p) = 1 (provided p is
-- really a prime).
b : % := quadraticNonResidue()
@@ -156,11 +156,11 @@
lr : List NNI := [r]
while r > 0 repeat
z := z * b ^ (2 ^ ( (e-r) :: NNI))
- r := twoPower z
- lr := cons(r, lr)
+ r := twoPower z
+ lr := cons(r, lr)
y : % := z ^ ( (u+1) quo 2)
for r in rest lr repeat
- y := y / b ^ (2 ^ (e-r-1) :: NNI)
+ y := y / b ^ (2 ^ (e-r-1) :: NNI)
if convert(y)@I < convert(-y)@I then y else -y
generator() == 1
Modified: trunk/src/algebra/tex.spad
===================================================================
--- trunk/src/algebra/tex.spad 2020-03-04 17:00:29 UTC (rev 2630)
+++ trunk/src/algebra/tex.spad 2020-03-04 17:39:33 UTC (rev 2631)
@@ -337,7 +337,7 @@
k := k + 1
message(res)
arg2
- arg2
+ arg2
formatSpecial('SUPERSUB, [first args, empty()$E, narg2], prec)
formatSpecial(op : Sy, args : L E, prec : I) : S ==
This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site.