ãåçèª ã«æé£ãããããŸãã
>>> ãæ°åŠã®ããžãã¯ãšéåè«ããæã£ãŠããã®ã§ããã
>>> ã¡ãããšèªã¿ãŸããã. p. 105, p. 129 ã«ããããã«,
>>> èªç¶æ°ãšåãæ¿åºŠãæã€éåãæééåã§,
>>> ããã§ãªãéåãç¡ééåã§ã.
>> ããã¯éžæå
¬çãåž°çŽçéåååšå
¬çãä»®å®ãããŠãªãã®ç¶æ
ã§ã®
>> ç¡ééåã®å®çŸ©ãªã®ã§ããã
> éããŸãã. ãéžæå
¬çãã¯ä»®å®ããŠããŸããã,
ãã£ããã§ãããã
> ãåž°çŽçéåååšå
¬çãã¯ä»®å®ããŠããŸã.
ãåž°çŽçéåååšå
¬çãä»®å®åŸãããªããšç¡ééåãå®çŸ©ããäºäžå¯èœãªã®ã§ããã
ãèªç¶æ°ãšåãæ¿åºŠãæã€éåãæééåã§,ããã§ãªãéåãç¡ééåã§ã.ã
ãšãã(æ®é(?)ã®)ç¡ééåã®å®çŸ©ãšãããã³ãã®ç¡ééåã®å®çŸ©ã®2éãã®å®çŸ©ãããã®ã§ããã
åè
ã¯"èªç¶æ°"ãšããçšèªãå®çŸ©äžã«çã蟌ãã§ããããèªç¶æ°ã®å®çŸ©åŸ(å³ã¡,åž°çŽçéåååšå
¬çä»®å®åŸã§ç¡ããã°ãªãã,åŸè
ããåž°çŽçéåååšå
¬çãä»®å®åŸã§ãªããšååšèšããªãã®ã§ãããçŽåŸã§ãã
ãããã³ãã®ç¡ééåã¯åž°çŽçéåååšå
¬çä»®å®åŸã«çŽã¡ã«å®çŸ©ã§ããã®ã«å¯ŸããŠ,
æ®éã®ç¡ééåã¯èªç¶æ°ãå®çŸ©ããŠããŸããŸã§ã¯å®çŸ©äžå¯èœãªã®ã§ããã
ãšããäºã¯ãããã³ãã®ç¡ééåã®å®çŸ©ã®æ¹ãæ®éã®ç¡ééåã®å®çŸ©ããæ©ãå®çŸ©ã§ããã®ã§äžéåºãã«ã¯ç¡ééåã®å®çŸ©ãšããã°ãããã³ãã®ãé©çšãããŠãã®ã§ãããã?
> ãæ°åŠã®ããžãã¯ãšéåè«ãã® 157 page ã«ããããã«,
> ç¡éå
¬çã®è¿°ã¹æ¹ã«ãè²ã
ãã, ããããããæéã»ç¡éã®å®çŸ©ã
> äžããŠããç¡éå
¬çãå®åŒåããæ¹æ³ããããã, èªç¶æ°ã®ååšã
> ãåž°çŽçéåãã®ååšããå°ããŠããç¡éãå®çŸ©ããã®ããã®æ¬ã®
> ç«å Žã§ã.
ãã¯ã,ãããã³ãã®ç¡ééåã®å®çŸ©ãæ¡çšããæ¹ãæ¥œãªã®ã§ããã
>> "ã©ã®èªç¶æ°ãšãåæ¿åºŠãæããªãéåãååšãã"ãšããå
¬çã
>> åŸã«çŸããã®ã§ããã
> ããã¯ãå
¬çãã§ã¯ãªã, ãåž°çŽçéåååšå
¬çãããå°ããã
> ãå®çãã§ã.
ããã§ãããå°ãªããšããåž°çŽçéåååšå
¬çããšãèªç¶æ°ã®å®çŸ©ãã®2ã€ãä»®å®ãããã°å°ããªãå®çãªã®ã§ããã
>>> inductive set ã¯ãã®å®çŸ©ã§ã®ç¡ééåã§ãã,
>>> ç¡ééåã§ã inductive set ã§ãªããã®ã¯ãããã§ããããŸã.
>> åºæ°ãã¢ã¬ã_1,ã¢ã¬ã_2,âŠçã§ããã
> ããã¯äœã倧ããªåéããéãªã£ãŠããŸã.
> ç¡éåºæ°ã¯æ¥µéé åºæ°ã§ããã,
ã¢ã¬ã_1,ã¢ã¬ã_2,âŠçãç¡éåºæ°ã§ããã
ãããŠ,Î±ãæ¥µéé åºæ°ãšã¯Î±ã®é åºåot(α)ãæéé åºå(ãŸãã¯æéé åºæ°)ã§ã¯ãªã,
ã€ãŸã, ânâNã«å¯ŸããŠ,{0,1,âŠ,n}ã¯ot(α)ã®å
ã§ã¯ãªãããšããæå³ã§ãããã
ç¡éåºæ°â極éé åºæ°
ã¯åœããåã§ããã
> åž°çŽçéå(inductive set)ã§ã.
æŽåå¯èœå®çããå®ç¡ééåã§ããããæŽåéå(ä»»æã®éšåéåã¯æå°éãæã€)ã«ä»ç«ãŠäžããäºãã§ããã®ã§, ä»»æã®ç¡ééåãXãšãããš,ããã¯æ¥µéé åºæ°ã®å
ã§ãã,
minX,minX{minX},minX{minX{minX}},âŠãšèªç¶æ°ã®ããã«äžŠã¹ãäºãåºæ¥ãã®ã§(âµAxiom of Choice), ä»»æã®ç¡éåºæ°ã®éåã¯åž°çŽçéåãšãªãã®ã§ããã
> äŸãæãããªã極éé åºæ°ä»¥å€ã®éåãæããå¿
èŠããããŸã.
ãã¿ãŸããã§ãããç¡éåºæ°ã®æ¥µéé åºéåã¯ååšããŸããã§ããã
>> èšå·"â"ãšå€å»¶æ§å
¬çãšç©ºéåå
¬çãšå¯Ÿã®å
¬çããã£ãŠãªã
>> 確ãã«{x}ãéåãšãªãäºã¯èªããããŸããã
> ZFéåè«ã®è©±ãããŠããã®ã§ããã, ããã§è¯ãããã§ã.
äºè§£ã§ãã
æé£ãããããŸãã
>> xâ{x,y}ã®"â"ã«ã¯äœã®æå³ãç¡ã(æªå®çŸ©èšå·)ã®ã§ãã?
> ã¯ã.
ããã ã£ãã®ã§ãããèŠããŠãããŸãã
A=Bãšã¯ä»»æã®xã«å¯ŸããŠ,(xâAâxâBäžã€xâBâxâA)ã§ããäº(äœãxâAã¯äœã®æå³ãæããªã)
ãšè§£éããã°å®ããã®ã§ãããã(ããã§ã®"â"ã¯å«æãæå³ããŸã)?
>> "â"ãšããèšå·ã¯äœããšåããããå¿ãã«çª®ããã®ã§"â"ãå®çŸ©ããã®ã§ããã
> 貎æ¹ã®èšè¿°ã¯å®çŸ©ã«ã¯ãªã£ãŠããŸããã§ãã. ãšããã,
ããã§ãããã
>> ããã ãšäžéè¿°èªè«çã§åœ¢åŒãããå
¬çè«çéåè«ã®ç«å Ž
>> (ã€ãŸã,âã¯ç¡å®çŸ©èšå·ãšãã(?))ã«åããŠããŸãã®ã§ããã
>> ãã¿ãŸãããäžéè¿°èªè«çã§åœ¢åŒãããå
¬çè«çéåè«ã®ç«å Žãšã¯
>> ç°¡åã«èšãã°ã©ãããããšã§ãããã?
> ãããçè§£ãããã®ã§ããã°, ãæ°åŠã®ããžãã¯ãšéåè«ãã®
> 第ïŒç« ãè¯ãå
¥éã«ãªãã§ããããã, ã¡ãããšãèªã¿äžãã.
æé£ãããããŸããåããããèªãã§ã¿ãŸããã
http://www.geocities.jp/a_k_i_k_o928346/def_first_order_predicate_language__00.pdf
ãšé ã«å®çŸ©ããŠãããŸããã
è«çèšå·ãšã¯åœé¡åŒ(âš,â§,ï¿¢ãšããåœé¡çµåããããªãåœé¡é¢æ°ã®äº)ãšâãšâã®éåèšå·ãšã®äºãæã,
è«çèšå·ããã§ããåœé¡é¢æ°ãè¿°èªåŒãšåŒã³,è¿°èªåŒã®è°è«ã®äºãè¿°èªè«çãšåŒã³ãŸãã
ãããŠ,æ°åŠèšå·ãšã¯é¢æ°èšå·ãšé¢ä¿èšå·ã®äºãæããŸãã
è«çèšå·ãšæ°åŠèšå·ãšãåãããè¿°èªåŒã1éèšèªåŒ,ãã®è°è«ã®äºã1éèšèªè«çãšåŒã³ãŸãã
ããã§ãã£ãŠ1éè¿°èªåŒãšã¯è«çèšå·ãš1éæ°åŠèšå·ãšããã§ããåœé¡é¢æ°ã®äºã§ãã,
ãã®è°è«ã®äºã1éè¿°èªè«çãšåŒã¶ã
ãšãã颚ã«è¡ãçããã®ã§ããããã§ãããã§ãããã?
ãã è§£ããªãã®ãæ°åŠèšå·ã®å®çŸ©ã®ç®æã§, ãŸã ZFCå
¬çç³»ãããè¿°ã¹ãŠããªã段éã§"颿°"ã"宿°"ãšããèšèãã©ãããŠæã¡åºããã®ã§ãããã?
>>
http://www.geocities.jp/a_k_i_k_o928346/infinite_descending_sequence__00.jpg
>> ãšããã€ããã§ãããããã¯å
šãã®ã€ã³ããã§ããäºãå€ããŸããã
>>
http://www.geocities.jp/a_k_i_k_o928346/infinite_descending_sequence__01.jpg
>> ã§ã¯åŠäœã§ãããã?
> åŠäœã§ãããã, ã£ãŠ, ããã¯ç§ãæžãã
>> > å ã¿ã«, n \in m ã〠m \in n ãšãªãéå m, n ãååšãããšã
>> > æ£åæ§ã®å
¬çãæºè¶³ãããªãããšã¯,
>> > A = { m, n } ãšãããš, A ã¯ç©ºéåã§ã¯ãªã,
>> > C \in A ãšãªã C 㯠C = m ã§ããã C = n ã§ãã,
>> > C = m ã®æã¯ n \in C ã〠n \in A ã§ãã,
>> > C = n ã®æã¯ m \in C ã〠m \in A ã§ãã,
>> > ããšããåãããŸã.
> ã®å£åã³ããŒã§ãã.
ããã§ãããããã¯å€§å€å€±ç€ŒããããŸããã
>>
http://www.geocities.jp/a_k_i_k_o928346/axiom_of_regularity__01.jpg
>> ãšãªã£ãã®ã§ãã
>> ãn \in m ã〠m \in n ãšãªãéå m, n ãååšãããšãã
>> ã®æ,確ãã«mânâmânââŠ
>> ãšãªãæ£åæ§ã®å
¬çã«ççŸãçããäºãåãããŸããã,
>> äžè¬ã®ç¡ééäžåã®å Žåã«ã¯ã©ã®ããã«ããŠççŸãçºçããããã®ã§ãããã?
> Peano ã®å
¬çãæºè¶³ããèªç¶æ°ãå®çŸ©åºæ¥ãŠããã§ããã°,
http://www.geocities.jp/a_k_i_k_o928346/def_of_natural_number__04.jpg
ã«ãŠ
ãI_A ãä»»æã® recursive set (æç§æžã§ã® inductive set) ã®
éšåéåã§ããããšã®èšŒæã¯çãããŠããããã§ãã.ã
ããã¯ã5ãã§ç€ºããŠãããŸããåéãããŠãŸãã§ãããã?
ãPeano ã®å
¬çã®éšåã¯ã Peano ã®å
¬çãã®çè§£ã
éã£ãŠããããã«ãæããŸã.
å ã¿ã«æç§æžã«æžããŠããã®ã¯ãç¥èšŒãã§ã.
ã¡ãããšã蚌æãã«ãŸã§, è¡é, æãã¯, èªéãåããŠ,
宿ãããŠäžãã.ã
äœåŠãããå æžã«èšŒæããŠããŸã£ããããããªãã®ã§ããã
> { a_n }_{n \in \mathbf{N}} ã®ãããªéåã®ååšãè¿°ã¹ãŠ
> è°è«ããã°æžãããšã§ã.
> ã n \in m ã〠m \in n ãšãªãéå m, n ãã¯ååšããªã,
> ãšããããšãçšããŠãæå°ã®åž°çŽçéåããšããŠå®çŸ©ããã
> èªç¶æ°ã Peano ã®å
¬çãæºè¶³ããããšã蚌æããããšããŠãããã
> ãã®èšŒæã®ä»æ¹ãåé¡ã«ããã®ã§ã.
ãããšãããã¯
>> ã€ãŸã,
>> 眮æå
¬ç&ååºå
¬çâ空éåå

>> ãæãç«ã€ã®ã§ç©ºéåã®å
¬çãåã£æã£ãŠãå
¬çç³»ãããã®ã§ããã
> ã眮æå
¬çãšååºå
¬çãã§ã¯ãªã
> ãç¡éå
¬çãšååºå
¬çãã§ã.
> çŸã«ãæ°åŠã®ããžãã¯ãšéåè«ãã§ã¯æ¡çšãããŠããŸãã.
äºè§£ã§ãã
>> æŽã«,
>> 眮æå
¬çâååºå

>> ãæãç«ã€ã®ã§,
>> 眮æå
¬çâ空éåã®å

>> ãæãç«ã¡ãŸãããã
>> ããããŸããš,眮æå
¬çããããã°ç©ºéåã®å
¬çã¯äžèŠãªã®ã§ãããã?
> ããã. ãç¡éå
¬çãšçœ®æå
¬çãããããã°
> ã空éåã®å
¬çãã¯äžèŠ, ãšããã®ãæ£ãã.
http://www.geocities.jp/a_k_i_k_o928346/def_empty_set__00.jpg
ãšããå
·åã«ç©ºéåã®ååšã蚌æããŸããã
ãã ,ã©ãããŠâa,âb;(vâbââ(âuâa;((u=v)â§Q(u))))ãtautologyã«ãªãã®åãããŸããã
眮æå
¬çãšã¯
(âx,(ây,âz;(P(x,y)â§P(x,z)ây = z)))â(âa,âb;(vâbââ(âuâa;P(u,v))))
ã®äºã§ãããã
âã¯å¿
èŠååã§ã¯ãªã嫿ãªã®ã§,
(âx,(ây,âz;(P(x,y)â§P(x,z)ây = z)))ãåœã§
(âa,âb;(vâbââ(âuâa;P(u,v))))ãåœã®å Žåã§ãè¯ãèš³ã§ããã
(âµ(âx,(ây,âz;(P(x,y)â§P(x,z)ây =
z)))â(âa,âb;(vâbââ(âuâa;P(u,v))))ã¯tautology)?
ãã®å Žåã¯, âa,âb;(vâbââ(âuâa;((u=v)â§Q(u))))ã¯tautologyã«æããªããªã£ãŠããŸããŸãã®ã§,ãã¯ãå
¬ç(æ£ç¢ºã«ã¯çœ®æå
¬çããå°ãããå®çŸ©)ã§ã¯ãªããªã,
bã¯éåãšã¯åŒã¹ãªããªã£ãŠããŸããŸãããã
ã©ãããã°(âa,âb;(vâbââ(âuâa;P(u,v))))ãtautologyã«åºæ¥ãŸãã§ãããã?
>>> å®çŸ©ããªããã° { x } ãäœã衚ãã®ãåãããŸãã.
>>> p. 157 ã® \emptyset ã®å®çŸ©ã®åŸã«,
>>> { x } ã®å®çŸ©ãæžããŠãããŸããã,
>>> åç
§ããŠäžãã.
>>
http://www.geocities.jp/a_k_i_k_o928346/def_of_braces__00.jpg
>> ãšããé¢šãªæãã§å®ããã§ãããã
>> (å ã¿ã«èšå·ãâ^Iãã¯implication(嫿)ãæå³ããŸã)?
> æ¬åŒ§ã®äœ¿ãæ¹ãå€ã§ãã.
> \forall u (u \in z) \Leftrightarrow u = y
> ã§ã¯ãªã,
> \forall u ( u \in z \Leftrightarrow u = y )
> ã§ã.
ããã¯æé£ãããããŸãã
æã§"z={y}â(def) âu(uâzââu=y)"ã¯äœãšèªãã®ã§ãããã?
ãz={y}ã§ãããšããäºã¯ä»»æã®éåuã«å¯ŸããŠuâzââu=yãæãç«ã€äºãšå®çŸ©ããã
ãšããè§£éã§æ£ããã§ãããã?
>> ãããŠãã®å®çŸ©ã¯ZFå
¬çç³»ããåã«è¿°ã¹ãã¹ãå®çŸ©ã ãšæã,
>> ZFå
¬çç³»ã«å眮ããŸããã
> ãŸ, äœåŠã«çœ®ããŠãæ§ããŸãã.
äºè§£ã§ãã
>> äœæ
ãªã{y}ãå®çŸ©ãããŠåããŠ,å€å»¶æ§å
¬çãªã©ãé è¿°ããããšæã£ãããã§ãã
>>
> { y } ãšãã£ãèšå·ã¯, åãªãçç¥èšå·, ãããã¯
> æå³ãåãæãããçºã®èšå·ã§ããã, ãå®çŸ©ãããŠåããŠã
> ãªã©ãšããèšèã䜿ã£ãŠããã®ã¯, 誀解ããŠãããšããããšã
> 瀺ããã®ã§ã.
ããã§ããã,倱瀌èŽããŸããã
>> æŽã«,z,yãsetsã§ã¯ãªãmathematical systems(æ°åŠçäœç³»)ãšããã®ã¯,
>> ZFå
¬çç³»ãæºããæ°åŠçäœç³»ã®äºã"éå"ãšåŒã¶ã®ã
>> éåã®å®çŸ©ã ãšæã£ãŠãŸãã®ã§,
>> ZFå
¬çã«å眮ããz={y}ã®å®çŸ©ã®z,yã¯éåãšåŒã¶ããšã¯äžå¯èœã
>> ãšå€æããããã§ãã
> åœé¡ãè¿°ã¹ãéã®åãªã倿°ã§ã.
ãã,åœé¡é¢æ°(ãŸãã¯æ¡ä»¶,ãŸãã¯çŽ è«çåŒ)ã®å€æ°ãšçåãã°ããã®ã§ããã
>> ãããšã,ãâããã{ }ãããz={y}ãã¯æªå®çŸ©èªãšè§£éãã¹ããªã®ã§ãããã
>> (ãã¿ãŸãããã¡ãã£ãšæ··ä¹±äžã§ã)?
> èŠã¯æååã®çœ®æèŠåã ãšæãã°è¯ã.
ãã, zâyãªããæ°åŠçäœç³»zã¯æ°åŠçäœç³»yã«å«ãŸããã,
{y}ãªããæ°åŠçäœç³»{y}ã¯æ°åŠçäœç³»yãå«ãã
ãšãã£ãæååã§ããããã
"å«ãŸãã"ãšã¯äœããšè¿œæ±ãããã,æ¥åžžç掻ã®äŒè©±ã§äœ¿çšãã"å«ãŸãã"ãšåæãšçããã°ããã®ã§ããã
>> å
ã,
>> x={Ï,{Ï},{Ï,{Ï}},{Ï,{Ï,{Ï}}},âŠ,{Ï,{Ï,{Ï,âŠ,{Ï,{Ï}}âŠ}},
>> y={Ï,{Ï},{Ï,{Ï}},{Ï,{Ï,{Ï}}},âŠ,{Ï,{Ï,{Ï,âŠ,{Ï,{Ï}}âŠ}}
>> (äœã,xãšyã®{ }ã®å
¥ãåæ°ã¯çãããšã¯éããªã)
>> ãšæžããã
> å³å¯ãªèšŒæäžã®èšæã«ãâŠãã䜿ã£ãŠã¯é§ç®ã§ã.
ããã£!! "âŠ"ã䜿ããªããªãã©ãããã°ããã®ã§ãããã?
> ããã«äœãå
¥ãããšãæ³åããŠãããã¯ä»ã®äººã«ã¯äŒãããŸãã.
Ï,{Ï},{Ï,{Ï}},{Ï,{Ï,{Ï}}}ãšé ã«åŸç¶ããèšå·ã®åãçç¥ãããã®ãšçããŠã¯ãã¡ã§ãããã?
>> ããã§ä»¥ã£ãŠ,yã®å
¥ãåæ°ãxã®å
¥ãåæ°ãäžã€å€ãå Žåã¯
>> xâyã¯çãšãªã(âµå
¬çãš),ãã以å€ã¯xâyã¯åœ(âµå
¬çãš)ãšãªãã
>> åŸã£ãŠ,Ïãéåã®åºçºç¹ãšããŠå
¬çã¢,ã€,ãŠ,ãšãæ§ç¯ãããš
>> xâyã®çåœãå€å®ã§ããã(çµ)
> éåãšããã®ã¯äœããå®çŸ©åºæ¥ãŠããªããã®ã§ã¯äœã蚌æã§ããŸãã.
ããã¯ãå°€ãã§ããã
âã{ }ãå®çŸ©ããŠéåãæªå®çŸ©èªãšããã®ã§ã¯ãªã,
âã{ }ãæªå®çŸ©èªãšããŠéåãå®çŸ©ããŠããç«å Žã§ãããã
>> ã§ã¯åŠäœã§ãããã?
> ãããã£ã圢åŒçãªè¿°èªè«çã®äžçãåºç€ãšããæã¯,
> æååã®æäœã«åž°çã§ããªããã®ã¯, äœãä¿¡çšããŠã¯
> ãããŸãã.
ããã§ããããèŠããŠãããããšæããŸãã
>> ãã¯ã,ã{x}ãã«ã¯(éäŸã¯)
>>
http://www.geocities.jp/a_k_i_k_o928346/def_of_braces__00.jpg
>> ãšããå®çŸ©ãZFå
¬çç³»ãè¿°ã¹ãåã«äžãããããã®ãªã®ã§ããã
> çç¥èšå·ã¯äœåŠã§äžããŠãè¯ãã, å
šã䜿ããã«æžãŸããããšã
> åºæ¥ããã®ã§ã.
ãããããã§ããããããã¯ãã