Programming language theory (PLT) is a branch of computer science that deals with the design, implementation, analysis, characterization, and classification of formal languages known as programming languages. Programming language theory is closely related to other fields including mathematics, software engineering, and linguistics. There are a number of academic conferences and journals in the area.
In some ways, the history of programming language theory predates even the development of programming languages themselves. The lambda calculus, developed by Alonzo Church and Stephen Cole Kleene in the 1930s, is considered by some to be the world's first programming language, even though it was intended to model computation rather than being a means for programmers to describe algorithms to a computer system. Many modern functional programming languages have been described as providing a "thin veneer" over the lambda calculus,[2] and many are easily described in terms of it.
The first programming language to be invented was Plankalkl, which was designed by Konrad Zuse in the 1940s, but not publicly known until 1972 (and not implemented until 1998). The first widely known and successful high-level programming language was Fortran, developed from 1954 to 1957 by a team of IBM researchers led by John Backus. The success of FORTRAN led to the formation of a committee of scientists to develop a "universal" computer language; the result of their effort was ALGOL 58. Separately, John McCarthy of MIT developed Lisp, the first language with origins in academia to be successful. With the success of these initial efforts, programming languages became an active topic of research in the 1960s and beyond.
There are several fields of study that either lie within programming language theory, or which have a profound influence on it; many of these have considerable overlap. In addition, PLT makes use of many other branches of mathematics, including computability theory, category theory, and set theory.
Formal semantics is the formal specification of the behaviour of computer programs and programming languages. Three common approaches to describe the semantics or "meaning" of a computer program are denotational semantics, operational semantics and axiomatic semantics.
Type theory is the study of type systems; which are "a tractable syntactic method for proving the absence of certain program behaviors by classifying phrases according to the kinds of values they compute".[4] Many programming languages are distinguished by the characteristics of their type systems.
Program analysis is the general problem of examining a program and determining key characteristics (such as the absence of classes of program errors). Program transformation is the process of transforming a program in one form (language) to another form.
Comparative programming language analysis seeks to classify programming languages into different types based on their characteristics; broad categories of programming languages are often known as programming paradigms.
TCS covers a wide variety of topics including algorithms, data structures, computational complexity, parallel and distributed computation, probabilistic computation, quantum computation, automata theory, information theory, cryptography, program semantics and verification, algorithmic game theory, machine learning, computational biology, computational economics, computational geometry, and computational number theory and algebra. Work in this field is often distinguished by its emphasis on mathematical technique and rigor.
While logical inference and mathematical proof had existed previously, in 1931 Kurt Gdel proved with his incompleteness theorem that there are fundamental limitations on what statements could be proved or disproved.
An algorithm is an effective method expressed as a finite list[3] of well-defined instructions[4] for calculating a function.[5] Starting from an initial state and initial input (perhaps empty),[6] the instructions describe a computation that, when executed, proceeds through a finite[7] number of well-defined successive states, eventually producing "output"[8] and terminating at a final ending state. The transition from one state to the next is not necessarily deterministic; some algorithms, known as randomized algorithms, incorporate random input.[9]
Automata theory is the study of abstract machines and automata, as well as the computational problems that can be solved using them. It is a theory in theoretical computer science, under discrete mathematics (a section of mathematics and also of computer science). Automata comes from the Greek word αὐτόματα meaning "self-acting".
Automata Theory is the study of self-operating virtual machines to help in the logical understanding of input and output process, without or with intermediate stage(s) of computation (or any function/process).
Computational complexity theory is a branch of the theory of computation that focuses on classifying computational problems according to their inherent difficulty, and relating those classes to each other. A computational problem is understood to be a task that is in principle amenable to being solved by a computer, which is equivalent to stating that the problem may be solved by mechanical application of mathematical steps, such as an algorithm.
A problem is regarded as inherently difficult if its solution requires significant resources, whatever the algorithm used. The theory formalizes this intuition, by introducing mathematical models of computation to study these problems and quantifying the amount of resources needed to solve them, such as time and storage. Other complexity measures are also used, such as the amount of communication (used in communication complexity), the number of gates in a circuit (used in circuit complexity) and the number of processors (used in parallel computing). One of the roles of computational complexity theory is to determine the practical limits on what computers can and cannot do.
Computational geometry is a branch of computer science devoted to the study of algorithms that can be stated in terms of geometry. Some purely geometrical problems arise out of the study of computational geometric algorithms, and such problems are also considered to be part of computational geometry.
The main impetus for the development of computational geometry as a discipline was progress in computer graphics and computer-aided design and manufacturing (CAD/CAM), but many problems in computational geometry are classical in nature, and may come from mathematical visualization.
Theoretical results in machine learning mainly deal with a type of inductive learning called supervised learning. In supervised learning, an algorithm is given samples that are labeled in some useful way. For example, the samples might be descriptions of mushrooms, and the labels could be whether or not the mushrooms are edible. The algorithm takes these previously labeled samples and uses them to induce a classifier. This classifier is a function that assigns labels to samples including the samples that have never been previously seen by the algorithm. The goal of the supervised learning algorithm is to optimize some measure of performance such as minimizing the number of mistakes made on new samples.
Computational number theory, also known as algorithmic number theory, is the study of algorithms for performing number theoretic computations. The best known problem in the field is integer factorization.
Cryptography is the practice and study of techniques for secure communication in the presence of third parties (called adversaries).[10] More generally, it is about constructing and analyzing protocols that overcome the influence of adversaries[11] and that are related to various aspects in information security such as data confidentiality, data integrity, authentication, and non-repudiation.[12] Modern cryptography intersects the disciplines of mathematics, computer science, and electrical engineering. Applications of cryptography include ATM cards, computer passwords, and electronic commerce.
Different kinds of data structures are suited to different kinds of applications, and some are highly specialized to specific tasks. For example, databases use B-tree indexes for small percentages of data retrieval and compilers and databases use dynamic hash tables as look up tables.
Data structures provide a means to manage large amounts of data efficiently for uses such as large databases and internet indexing services. Usually, efficient data structures are key to designing efficient algorithms. Some formal design methods and programming languages emphasize data structures, rather than algorithms, as the key organizing factor in software design. Storing and retrieving can be carried out on data stored in both main memory and in secondary memory.
Distributed computing studies distributed systems. A distributed system is a software system in which components located on networked computers communicate and coordinate their actions by passing messages.[15] The components interact with each other in order to achieve a common goal. Three significant characteristics of distributed systems are: concurrency of components, lack of a global clock, and independent failure of components.[15] Examples of distributed systems vary from SOA-based systems to massively multiplayer online games to peer-to-peer applications, and blockchain networks like Bitcoin.
A computer program that runs in a distributed system is called a distributed program, and distributed programming is the process of writing such programs.[16] There are many alternatives for the message passing mechanism, including RPC-like connectors and message queues. An important goal and challenge of distributed systems is location transparency.
Information-based complexity (IBC) studies optimal algorithms and computational complexity for continuous problems. IBC has studied continuous problems as path integration, partial differential equations, systems of ordinary differential equations, nonlinear equations, integral equations, fixed points, and very-high-dimensional integration.
93ddb68554